海角社区论坛

 

Filter

Publications

The 海角社区论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
MJ Parker, S Licence, L Erlandsson, GR Galler, L Chakalova, CS Osborne, G Morgan, P Fraser, H Jumaa, TH Winkler, J Skok, IL M氓rtensson

The pre-B-cell receptor (pre-BCR), composed of Ig heavy and surrogate light chain (SLC), signals pre-BII-cell proliferative expansion. We have investigated whether the pre-BCR also signals downregulation of the SLC genes (VpreB and lambda5), thereby limiting this expansion. We demonstrate that, as BM cells progress from the pre-BI to large pre-BII-cell stage, there is a shift from bi- to mono-allelic lambda5 transcription, while the second allele is silenced in small pre-BII cells. A VpreB1-promoter-driven transgene shows the same pattern, therefore suggesting that VpreB1 is similarly regulated and thereby defines the promoter as a target for transcriptional silencing. Analyses of pre-BCR-deficient mice show a temporal delay in lambda5 downregulation, thereby demonstrating that the pre-BCR is essential for monoallelic silencing at the large pre-BII-cell stage. Our data also suggest that SLP-65 is one of the signaling components important for this process. Furthermore, the VpreB1/lambda5 alleles undergo dynamic changes with respect to nuclear positioning and heterochromatin association, thereby providing a possible mechanism for their transcriptional silencing.

+view abstract The EMBO journal, PMID: 16281060 2005

Open Access
Singh U, Sun T, Shi W, Schulz R, Nuber UA, Varanou A, Hemberger MC, Elliott RW, Ohta H, Wakayama T, Fundele R Epigenetics

Different causes, such as maternal diabetes, cloning by nuclear transfer, interspecific hybridization, and deletion of some genes such as Esx1, Ipl, or Cdkn1c, may underlie placental overgrowth. In a previous study, we carried out comparative gene expression analysis in three models of placental hyperplasias, cloning, interspecies hybridization (IHPD), and Esx1 deletion. This study identified a large number of genes that exhibited differential expression between normal and enlarged placentas; however, it remained unclear how altered expression of any specific gene was related to any specific placental phenotype. In the present study, we focused on two genes, Car2 and Ncam1, which both exhibited increased expression in interspecies and cloned hyperplastic placentas. Apart from a detailed expression analysis of both genes during normal murine placentation, we also assessed morphology of placentas that were null for Car2 or Ncam1. Finally, we attempted to rescue placental hyperplasia in a congenic model of IHPD by decreasing transcript levels of Car2 or Ncam1. In situ analysis showed that both genes are expressed mainly in the spongiotrophoblast, however, expression patterns exhibited significant variability during development. Contrary to expectations, homozygous deletion of either Car2 or Ncam1 did not result in placental phenotypes. However, expression analysis of Car3 and Ncam2, which can take over the function of Car2 and Ncam1, respectively, indicated a possible rescue mechanism, as Car3 and Ncam2 were expressed in spongiotrophoblast of Car2 and Ncam1 mutant placentas. On the other hand, downregulation of either Car2 or Ncam1 did not rescue any of the placental phenotypes of AT24 placentas, a congenic model for interspecies hybrid placentas. This strongly suggested that altered expression of Car2 and Ncam1 is a downstream event in placental hyperplasia.

+view abstract Developmental dynamics : an official publication of the American Association of Anatomists, PMID: 16247769 2005

Open Access
Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM, Okkenhaug K, Coadwell WJ, Andrews SR, Thelen M, Jones GE, Hawkins PT, Stephens LR Immunology,Bioinformatics

Rac GTPases regulate cytoskeletal structure, gene expression, and reactive oxygen species (ROS) production. Rac2-deficient neutrophils cannot chemotax, produce ROS, or degranulate upon G protein-coupled receptor (GPCR) activation. Deficiency in PI3Kgamma, an upstream regulator of Rac, causes a similar phenotype. P-Rex1, a guanine-nucleotide exchange factor (GEF) for Rac, is believed to link GPCRs and PI3Kgamma to Rac-dependent neutrophil responses. We have investigated the functional importance of P-Rex1 by generating a P-Rex1(-/-) mouse. P-Rex1(-/-) mice are viable and healthy, with apparently normal leukocyte development, but with mild neutrophilia. In neutrophils from P-Rex1(-/-) mice, GPCR-dependent Rac2 activation is impaired, whereas Rac1 activation is less compromised. GPCR-dependent ROS formation is absent in lipopolysaccharide (LPS)-primed P-Rex1(-/-) neutrophils, but less affected in unprimed or TNFalpha-primed cells. Recruitment of P-Rex1(-/-) neutrophils to inflammatory sites is impaired. Surprisingly, chemotaxis of isolated neutrophils is only slightly reduced, with a mild defect in cell speed, but normal polarization and directionality. Secretion of azurophil granules is unaffected. In conclusion, P-Rex1 is an important regulator of neutrophil function by mediating a subset of Rac-dependent neutrophil responses. However, P-Rex1 is not an essential regulator of neutrophil chemotaxis and degranulation.

+view abstract Current biology : CB, PMID: 16243035 2005

M Coleman Signalling

A wide range of insults can trigger axon degeneration, and axons respond with diverse morphology, topology and speed. However, recent genetic, immunochemical, morphological and pharmacological investigations point to convergent degeneration mechanisms. The principal convergence points - poor axonal transport, mitochondrial dysfunction and an increase in intra-axonal calcium - have been identified by rescuing axons with the slow Wallerian degeneration gene (Wld(S)) and studies with blockers of sodium or calcium influx. By understanding how the pathways fit together, we can combine our knowledge of mechanisms, and potentially also treatment strategies, from different axonal disorders.

+view abstract Nature reviews. Neuroscience, PMID: 16224497 2005

Richardson SM,Walker RV,Parker S,Rhodes NP,Hunt JA,Freemont AJ,Hoyland JA Flow Cytometry

Low back pain is one of the largest health problems in the Western world today, and intervertebral disc degeneration has been identified as a main cause. Currently, treatments are symptomatic, but cell-based tissue engineering methods are realistic alternatives for tissue regeneration. However, the major problem for these strategies is the generation of a suitable population of cells. Adult bone marrow-derived mesenchymal stem cells (MSCs) are undifferentiated, multipotent cells that have the ability to differentiate into a number of cell types, including the chondrocyte-like cells found within the nucleus pulposus (NP) of the intervertebral disc; however, no method exists to differentiate these cells in an accessible monolayer environment. We have conducted coculture experiments to determine whether cells from the human NP can initiate the differentiation of human MSCs with or without cell-cell contact. Fluorescent labeling of the stem cell population and high-speed cell sorting after coculture with cell-cell contact allowed examination of individual cell populations. Real-time quantitative polymerase chain reaction showed significant increases in NP marker genes in stem cells when cells were cocultured with contact for 7 days, and this change was regulated by cell ratio. No significant change in NP marker gene expression in either NP cells or stem cells was observed when cells were cultured without contact, regardless of cell ratio. Thus, we have shown that human NP and MSC coculture with contact is a viable method for generating a large population of differentiated cells that could be used in cell-based tissue engineering therapies for regeneration of the degenerate intervertebral disc.

+view abstract Stem cells (Dayton, Ohio), PMID: 16223853 2006

Open Access
Barona T, Byrne RD, Pettitt TR, Wakelam MJ, Larijani B, Poccia DL Signalling

Purified membrane vesicles isolated from sea urchin eggs form nuclear envelopes around sperm nuclei following GTP hydrolysis in the presence of cytosol. A low density subfraction of these vesicles (MV1), highly enriched in phosphatidylinositol (PtdIns), is required for nuclear envelope formation. Membrane fusion of MV1 with a second fraction that contributes most of the nuclear envelope can be initiated without GTP by an exogenous bacterial PtdIns-specific phospholipase C (PI-PLC) which hydrolyzes PtdIns to form diacylglycerides and inositol 1-phosphate. This PI-PLC hydrolyzes a subset of sea urchin membrane vesicle PtdIns into diglycerides enriched in long chain, polyunsaturated species as revealed by a novel liquid chromatography-mass spectrometry analysis. Large unilammelar vesicles (LUVs) enriched in PtdIns can substitute for MV1 in PI-PLC induced nuclear envelope formation. Moreover, MV1 prehydrolyzed with PI-PLC and washed to remove inositols leads to spontaneous nuclear envelope formation with MV2 without further PI-PLC treatment. LUVs enriched in diacylglycerol mimic prehydrolyzed MV1. These results indicate that production of membrane-destabilizing diglycerides in membranes enriched in PtdIns may facilitate membrane fusion in a natural membrane system and suggest that MV1, which binds only to two places on the sperm nucleus, may initiate fusion locally.

+view abstract The Journal of biological chemistry, PMID: 16216883 2005

PD Evans, B Maqueira

Insect octopamine receptors are G-protein coupled receptors. They can be coupled to second messenger pathways to mediate either increases or decreases in intracellular cyclic AMP levels or the generation of intracellular calcium signals. Insect octopamine receptors were originally classified on the basis of second messenger changes induced in a variety of intact tissue preparations. Such a classification system is problematic if more than one receptor subtype is present in the same tissue preparation. Recent progress on the cloning and characterization in heterologous cell systems of octopamine receptors from Drosophila and other insects is reviewed. A new classification system for insect octopamine receptors into "alpha-adrenergic-like octopamine receptors (OctalphaRs)", "beta-adrenergic-like octopamine receptors (OctbetaRs)" and "octopamine/tyramine (or tyraminergic) receptors" is proposed based on their similarities in structure and in signalling properties with vertebrate adrenergic receptors. In future studies on the molecular basis of octopamine signalling in individual tissues it will be essential to identify the relative expression levels of the different classes of octopamine receptor present. In addition, it will be essential to identify if co-expression of such receptors in the same cells results in the formation of oligomeric receptors with specific emergent pharmacological and signalling properties.

+view abstract Invertebrate neuroscience : IN, PMID: 16211376 2005

Open Access
Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA Epigenetics

In order to exploit the exceptional potential of human embryonic stem cells (hESCs) in cell-replacement therapies, the genetic and epigenetic factors controlling early human development must be better defined. Limitations in human embryonic material restrict the scale of studies that can be performed, and therefore an in vitro model in which to study epigenetic regulation in human preimplantation cell types would be desirable. HESCs could provide such a model, but since they are derived from a stage in mammalian development when the genome is undergoing global epigenetic remodelling, it is unclear whether their epigenetic status would be stable or subject to variation. Herein, we discuss recent work that examines allele-specific imprinted gene expression and methylation patterns, thereby demonstrating that hESCs maintain a substantial degree of epigenetic stability during culture. Therefore, we suggest that hESCs could provide a model for studying epigenetic regulation during the early stages of human cellular pluripotency and differentiation. Furthermore, we propose specific experiments using such a model to address important questions pertaining to epigenetic mechanisms of certain human disorders.

+view abstract Cell cycle (Georgetown, Tex.), PMID: 16205114 2005

Caraux A, Kim N, Bell SE, Zompi S, Ranson T, Lesjean-Pottier S, Garcia-Ojeda ME, Turner M, Colucci F Immunology

Phospholipase C-gamma2 (PLC-gamma2) is a key component of signal transduction in leukocytes. In natural killer (NK) cells, PLC-gamma2 is pivotal for cellular cytotoxicity; however, it is not known which steps of the cytolytic machinery it regulates. We found that PLC-gamma2-deficient NK cells formed conjugates with target cells and polarized the microtubule-organizing center, but failed to secrete cytotoxic granules, due to defective calcium mobilization. Consequently, cytotoxicity was completely abrogated in PLC-gamma2-deficient cells, regardless of whether targets expressed NKG2D ligands, missed self major histocompatibility complex (MHC) class I, or whether NK cells were stimulated with IL-2 and antibodies specific for NKR-P1C, CD16, CD244, Ly49D, and Ly49H. Defective secretion was specific to cytotoxic granules because release of IFN-gamma on stimulation with IL-12 was normal. Plcg2-/- mice could not reject MHC class I-deficient lymphoma cells nor could they control CMV infection, but they effectively contained Listeria monocytogenes infection. Our results suggest that exocytosis of cytotoxic granules, but not cellular polarization toward targets, depends on intracellular calcium rise during NK cell cytotoxicity. In vivo, PLC-gamma2 regulates selective facets of innate immunity because it is essential for NK cell responses to malignant and virally infected cells but not to bacterial infections.

+view abstract Blood, PMID: 16204312 2006

Rothenburg S, Haag F, Koch-Nolte F, Carter C, Graham M, Butcher GW

ART2 (RT6) belongs to the family of mono-ADP-ribosyltransferases (ARTs). ART2 is a T-cell differentiation marker expressed by the majority of mature peripheral T cells in the rat. The two known ART2 allotypes display approximately 95% amino acid identity. We sequenced the ART2 coding regions from 18 inbred rat strains and found two additional alleles, termed Art2 ( a2 ) and Art2 ( b2 ). Monoclonal antibody Gy12/61 specifically reacted with Art2 ( a2 ) but not Art2 ( a1 ) lymph node cells. Expression of ART2 allotypes in Jurkat cells confirmed this specificity. A polymerase chain reaction (PCR) assay using restriction fragment length polymorphisms is described, which allows the easy discrimination of Art2 alleles. All four laboratory rat alleles, as well as an additional sequence variant, were found amongst 18 wild rat DNA samples. PCR analysis confirmed the selective presence of a rodent identifier (ID) element in the Art2 ( a ) but not the Art2 ( b ) alleles in all rats studied. Analysis of Art2 ( a1 ) and Art2 ( b2 ) genes showed greater divergence in coding than in non-coding regions. Together with the finding of a high number of non-synonymous mutations leading mostly to non-conservative amino acid substitutions clustered on the side facing away from the cell surface, this suggests that the Art2 polymorphism has been subject to selection.

+view abstract Immunogenetics, PMID: 16195877 2005

Open Access
A Bilancio, K Okkenhaug, M Camps, JL Emery, T Ruckle, C Rommel, B Vanhaesebroeck Immunology

Mouse gene-targeting studies have documented a central role of the p110delta isoform of phosphoinositide 3-kinase (PI3K) in B-cell development and function. A defect in B-cell antigen receptor (BCR) signaling is key to this B-cell phenotype. Here we further characterize this signaling defect and report that a p110delta-selective small molecule inhibitor mirrors the effect of genetic inactivation of p110delta in BCR signaling. p110delta activity is indispensable for BCR-induced DNA synthesis and phosphorylation of Akt/protein kinase B (PKB), forkhead transcription factor/forkhead box O3a (FOXO3a), and p70 S6 kinase (p70 S6K), with modest effects on the phosphorylation of glycogen synthase kinase 3 alpha/beta (GSK3alpha/beta) and extracellular signal-regulated kinase (Erk). The PI3K-dependent component of intracellular calcium mobilization also completely relies on p110delta catalytic activity. Resting B cells with inactive p110delta fail to enter the cell cycle, correlating with an incapacity to up-regulate the expression of cyclins D2, A, and E, and to phosphorylate the retinoblastoma protein (Rb). p110delta is also critical for interleukin 4 (IL-4)-induced phosphorylation of Akt/PKB and FOXO3a, and protection from apoptosis. Taken together, these data show that defects observed in p110delta mutant mice are not merely a consequence of altered B-cell differentiation, and emphasize the potential utility of p110delta as a drug target in autoimmune diseases in which B cells play a crucial role.

+view abstract Blood, PMID: 16179367 2006

David DC, Hoerndli F, G枚tz J Signalling

Transcriptomics and proteomics are increasingly applied to gain a mechanistic insight into neurodegenerative disorders. These techniques not only identify distinct, differentially expressed mRNAs and proteins but are also employed to dissect signaling pathways and reveal networks by using an integrated approach. In part I of this back-to-back review, technical aspects are discussed: in the transcriptomics section, which includes enrichment by laser microcapture dissection, we comment on qRT-PCR, SAGE, subtractive hybridization, differential display and microarrays, including software packages. In the proteomics section we discuss two-dimensional (2D) gel electrophoresis, liquid chromatography, methods to label and enrich specific proteins or peptides, and different types of mass spectrometers. These tools have been applied to a range of neurodegenerative disorders and are discussed and integrated in part II (Functional Genomics meets neurodegenerative disorders. Part II: application and data integration).

+view abstract Progress in neurobiology, PMID: 16168556

Wells CM, Bhavsar PJ, Evans IR, Vigorito E, Turner M, Tybulewicz V, Ridley AJ Immunology

Vav family proteins act as guanine nucleotide exchange factors for Rho family proteins, which are known to orchestrate cytoskeletal changes and cell migration in response to extracellular stimuli. Using mice deficient for Vav1, Vav2 and/or Vav3, overlapping and isoform-specific functions of the three Vav proteins have been described in various hematopoietic cell types, but their roles in regulating cell morphology and migration have not been studied in detail. To investigate whether Vav isoforms have redundant or unique functions in regulating adhesion and migration, we investigated the properties of Vav1-deficient and Vav2-deficient macrophages. Both Vav1-deficient and Vav2-deficient cells have a smaller adhesive area; yet, only Vav1-deficient cells have a reduced migration speed, which coincides with a lower level of microtubules. Vav2-deficient macrophages display a high level of constitutive membrane ruffling, but neither Vav1 nor Vav2 is required for colony stimulating factor-1-induced membrane ruffling and cell spreading. Our results suggest that the migration speed of macrophages is regulated independently of spread area or membrane ruffling and that Vav1 is selectively required to maintain a normal migration speed.

+view abstract Experimental cell research, PMID: 16137676 2005

Open Access
Reik W, Murrell A, Lewis A, Mitsuya K, Umlauf D, Dean W, Higgins M, Feil R Epigenetics

+view abstract Cold Spring Harbor symposia on quantitative biology, PMID: 16117630 2004

Glassford J, Vigorito E, Soeiro I, Madureira PA, Zoumpoulidou G, Brosens JJ, Turner M, Lam EW Immunology

Induction of cyclin D2 is essential for mediating cell cycle entry in B cells activated by BCR cross-linking. In the present study we show that, like B lymphocytes lacking cyclin D2, the p85alpha subunit of phosphatidylinositol 3-kinase (PI3K) or other components of the B cell signalosome, p110delta-null B cells fail to induce cyclin D2 and enter early G1 but not S phase of the cell cycle. The inhibitors of PI3K activity, LY294002 and Wortmannin, also abrogate cyclin D2 induction by BCR cross-linking, confirming that the class IA PI3K is necessary for cyclin D2 induction in response to BCR stimulation. Furthermore, using both p85alpha-null and p110delta-null B cells and inhibitors of PI3K, this study demonstrates for the first time, that BCR cross-linking induces cyclin D2 mRNA expression via transcriptional activation of the cyclin D2 promoter and that this transcriptional activation of cyclin D2 requires PI3K activity. Moreover, we identify a region between nucleotides -1624 and -1303 of the cyclin D2 promoter containing elements responsive to anti-IgM, which are PI3K dependent. Further characterisation of signalling intermediates downstream of the BCR revealed a perturbation of MAPK signalling pathways in p85alpha-null and p110delta-null B cells, and our data suggests that cross-talk exists between the PI3K and JNK pathways.

+view abstract European journal of immunology, PMID: 16114097 2005

J Domin, L Harper, D Aubyn, M Wheeler, O Florey, D Haskard, M Yuan, D Zicha Signalling

The biological and pathophysiological significance of class II phosphoinositide 3-kinase enzyme expression currently remains unclear. Using an in vitro scrape wound assay and time-lapse video microscopy, we demonstrate that cell motility is increased in cultures expressing recombinant PI3K-C2beta enzyme. In addition, overexpression of PI3K-C2beta transiently decreased cell adhesion, stimulated the formation of cytoplasmic processes, and decreased the rate of cell proliferation. Consistent with these observations, expression of PI3K-C2beta also decreased expression of alpha4 beta1 integrin subunits. Using asynchronous cultures, we show that endogenous PI3K-C2beta is present in lamellipodia of motile cells. When cells expressing recombinant PI3K-C2beta were plated onto fibronectin, cortical actin staining increased markedly and actin rich lamellipodia and filopodia became evident. Overexpression of a 2xFYVE(Hrs) domain fusion protein abolished this response demonstrating that the effect of PI3K-C2beta on the reorganization of actin filaments is dependent upon PtdIns3P. Finally, overexpression of PI3K-C2beta increased GTP loading of Cdc42. Our data demonstrates for the first time, that PI3K-C2beta plays a regulatory role in cell motility and that the mechanism by which it reorganizes the actin cytoskeleton is dependent upon PtdIns3P production.

+view abstract Journal of cellular physiology, PMID: 16113997 2005

Open Access
C Dion, C Carter, L Hepburn, WJ Coadwell, G Morgan, M Graham, N Pugh, G Anderson, GW Butcher, JR Miller Immunology,Flow Cytometry

Reports suggest that two members of the novel immune-associated nucleotide (Ian) GTPase family, Ian1 and Ian5, play roles in T cell development. We performed real-time PCR analysis of the expression of Ian genes of the rat during T cell maturation, in macrophages and in cell lines. We found that all of the genes were expressed at relatively low levels at the early double-negative thymocyte stage but were expressed more strongly at later cell stages. Our study also revealed the fact that the previously reported Ian9, Ian10 and Ian11 genes are, instead, parts of a single gene for which we retain the name Ian9, potentially encoding a GTPase with a highly unusual triplicated structure. Antisera were developed against both Ian1 and Ian9. We established that Ian9 is produced as an approximately 75-kDa protein in both T cells and thymocytes. We observed that levels of both Ian1 and Ian9 proteins are profoundly reduced in T cells from lymphopenic rats as compared with wild-type rats. It was demonstrated that thymocytes and B cells from lymphopenic rats (Ian5 null) did not show enhanced sensitivity to gamma-irradiation-induced apoptosis.

+view abstract International immunology, PMID: 16103028 2005

L Chakalova, E Debrand, JA Mitchell, CS Osborne, P Fraser

As the relationship between nuclear structure and function begins to unfold, a picture is emerging of a dynamic landscape that is centred on the two main processes that execute the regulated use and propagation of the genome. Rather than being subservient enzymatic activities, the replication and transcriptional machineries provide potent forces that organize the genome in three-dimensional nuclear space. Their activities provide opportunities for epigenetic changes that are required for differentiation and development. In addition, they impose physical constraints on the genome that might help to shape its evolution.

+view abstract Nature reviews. Genetics, PMID: 16094312 2005

Open Access
Mikl MC, Watt IN, Lu M, Reik W, Davies SL, Neuberger MS, Rada C Epigenetics

The activation-induced deaminase/apolipoprotein B-editing catalytic subunit 1 (AID/APOBEC) family comprises four groups of proteins. Both AID, a lymphoid-specific DNA deaminase that triggers antibody diversification, and APOBEC2 (function unknown) are found in all vertebrates examined. In contrast, APOBEC1, an RNA-editing enzyme in gastrointestinal cells, and APOBEC3 are restricted to mammals. The function of most APOBEC3s, of which there are seven in human but one in mouse, is unknown, although several human APOBEC3s act as host restriction factors that deaminate human immunodeficiency virus type 1 replication intermediates. A more primitive function of APOBEC3s in protecting against the transposition of endogenous retroelements has, however, been proposed. Here, we focus on mouse APOBEC2 (a muscle-specific protein for which we find no evidence of a deaminating activity on cytidine whether as a free nucleotide or in DNA) and mouse APOBEC3 (a DNA deaminase which we find widely expressed but most abundant in lymphoid tissue). Gene-targeting experiments reveal that both APOBEC2 (despite being an ancestral member of the family with no obvious redundancy in muscle) and APOBEC3 (despite its proposed role in restricting endogenous retrotransposition) are inessential for mouse development, survival, or fertility.

+view abstract Molecular and cellular biology, PMID: 16055735 2005

Open Access
Senis YA, Atkinson BT, Pearce AC, Wonerow P, Auger JM, Okkenhaug K, Pearce W, Vigorito E, Vanhaesebroeck B, Turner M, Watson SP Immunology

We have investigated the function of the p110delta catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase) in platelets using p110delta knock-out (p110delta(-/-)) mice and p110delta knock-in (p110delta(D910A/D910A)) mice, which express a catalytically inactive form of the enzyme. Aggregation to threshold concentrations of the GPVI-specific agonist, CRP, was partially reduced in p110delta(-/-) and p110delta(D910A/D910A) platelets. This inhibition was overcome by higher concentrations of CRP. The degree of inhibition was considerably weaker than that induced by LY294002 and wortmannin, which inhibit all isoforms of PI 3-kinase. p110delta(-/-) platelets showed decreased spreading on fibrinogen- or von Willebrand factor (VWF)-coated surfaces under static conditions, whereas they spread normally on collagen. LY294002 had a more pronounced inhibitory effect on spreading on all three surfaces. Adhesion and aggregate formation of p110delta(-/-) platelets to collagen or fibrinogen/VWF at intermediate/high rates of shear were normal. This study demonstrates a minor role for the p110delta catalytic subunit in mediating platelet activation by the collagen receptor GPVI and integrin alphaIIbeta3. The more pronounced inhibitory effect of LY294002 and wortmannin indicates that other isoforms of PI 3-kinase play a more significant role in signalling by the two platelet glycoprotein receptors.

+view abstract Platelets, PMID: 16011964 0

Liston A, Goodnow CC Immunology

The cause of common polygenic autoimmune diseases is poorly understood because of genetic and cellular complexity in humans and animals. We have investigated the mechanisms of two genetic causes of organ-specific autoimmunity by tracking the fate of high avidity organ-specific CD4 T cells using a transgenic mouse model. Firstly, we have found that an Idd-associated duster of loci from the NOD strain causes a T cell intrinsic failure to delete during in vivo encounter with high-avidity autoantigen, a trait distinguished by the failure to induce the pro-apoptotic gene Bim. Secondly, we have found that inactivation of the autoimmune regulator (Aire) gene reduces the level of thymic expression of organ-specific genes, in a gene-dose dependent manner. In this paper we describe a model relating efficiency of thymic deletion and susceptibility to autoimmunity. Using this model, subtle quantitative trait loci can have an additive effect on each of the parameters of thymic deletion, and the result of interaction between subtle modifications in the multiple parameters can result in large changes in the susceptibility to autoimmunity.

+view abstract Novartis Foundation symposium, PMID: 15999807 2005

Open Access
Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J, Schofield PN, Reik W, Macdonald F, Maher ER Epigenetics

Beckwith-Wiedemann Syndrome (BWS) results from mutations or epigenetic events involving imprinted genes at 11p15.5. Most BWS cases are sporadic and uniparental disomy (UPD) or putative imprinting errors predominate in this group. Sporadic cases with putative imprinting defects may be subdivided into (a) those with loss of imprinting (LOI) of IGF2 and H19 hypermethylation and silencing due to a defect in a distal 11p15.5 imprinting control element (IC1) and (b) those with loss of methylation at KvDMR1, LOI of KCNQ1OT1 (LIT1) and variable LOI of IGF2 in whom there is a defect at a more proximal imprinting control element (IC2). We investigated genotype/epigenotype-phenotype correlations in 200 cases with a confirmed molecular genetic diagnosis of BWS (16 with CDKN1C mutations, 116 with imprinting centre 2 defects, 14 with imprinting centre 1 defects and 54 with UPD). Hemihypertrophy was strongly associated with UPD (P<0.0001) and exomphalos was associated with an IC2 defect or CDKN1C mutation but not UPD or IC1 defect (P<0.0001). When comparing birth weight centile, IC1 defect cases were significantly heavier than the patients with CDKN1C mutations or IC2 defect (P=0.018). The risk of neoplasia was significantly higher in UPD and IC1 defect cases than in IC2 defect and CDKN1C mutation cases. Kaplan-Meier analysis revealed a risk of neoplasia for all patients of 9% at age 5 years, but 24% in the UPD subgroup. The risk of Wilms' tumour in the IC2 defect subgroup appears to be minimal and intensive screening for Wilms' tumour appears not to be indicated. In UPD patients, UPD extending to WT1 was associated with renal neoplasia (P=0.054). These findings demonstrate that BWS represents a spectrum of disorders. Identification of the molecular subtype allows more accurate prognostic predictions and enhances the management and surveillance of BWS children such that screening for Wilms' tumour and hepatoblastoma can be focused on those at highest risk.

+view abstract European journal of human genetics : EJHG, PMID: 15999116 2005

B Maqueira, H Chatwin, PD Evans

Insect octopamine receptors carry out many functional roles traditionally associated with vertebrate adrenergic receptors. These include control of carbohydrate metabolism, modulation of muscular tension, modulation of sensory inputs and modulation of memory and learning. The activation of octopamine receptors mediating many of these actions leads to increases in the levels of cyclic AMP. However, to date none of the insect octopamine receptors that have been cloned have been convincingly shown to be capable of directly mediating selective and significant increases in cyclic AMP levels. Here we report on the identification and characterization of a novel, neuronally expressed family of three Drosophila G-protein coupled receptors that are selectively coupled to increases in intracellular cyclic AMP levels by octopamine. This group of receptors, DmOct beta1R (CG6919), DmOct beta2R (CG6989) and DmOct beta3R (CG7078) shows homology to vertebrate beta-adrenergic receptors. When expressed in Chinese hamster ovary cells all three receptors show a strong preference for octopamine over tyramine for the accumulation of cyclic AMP but show unique pharmacological profiles when tested with a range of synthetic agonists and antagonists. Thus, the pharmacological profile of individual insect tissue responses to octopamine might vary with the combination and the degree of expression of the individual octopamine receptors present.

+view abstract Journal of neurochemistry, PMID: 15998303 2005

DP Srivastava, EJ Yu, K Kennedy, H Chatwin, V Reale, M Hamon, T Smith, PD Evans

Nongenomic response pathways mediate many of the rapid actions of steroid hormones, but the mechanisms underlying such responses remain controversial. In some cases, cell-surface expression of classical nuclear steroid receptors has been suggested to mediate these effects, but, in a few instances, specific G-protein-coupled receptors (GPCRs) have been reported to be responsible. Here, we describe the activation of a novel, neuronally expressed Drosophila GPCR by the insect ecdysteroids ecdysone (E) and 20-hydroxyecdysone (20E). This is the first report of an identified insect GPCR interacting with steroids. The Drosophila melanogaster dopamine/ecdysteroid receptor (DmDopEcR) shows sequence homology with vertebrate beta-adrenergic receptors and is activated by dopamine (DA) to increase cAMP levels and to activate the phosphoinositide 3-kinase pathway. Conversely, E and 20E show high affinity for the receptor in binding studies and can inhibit the effects of DA, as well as coupling the receptor to a rapid activation of the mitogen-activated protein kinase pathway. The receptor may thus represent the Drosophila homolog of the vertebrate "gamma-adrenergic receptors," which are responsible for the modulation of various activities in brain, blood vessels, and pancreas. Thus, DmDopEcR can function as a cell-surface GPCR that may be responsible for some of the rapid, nongenomic actions of ecdysteroids, during both development and signaling in the mature adult nervous system.

+view abstract The Journal of neuroscience : the official journal of the Society for Neuroscience, PMID: 15987944 2005