海角社区论坛

 

Filter

Publications

The 海角社区论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

R Zhao, D Oxley, TS Smith, GA Follows, AR Green, DR Alexander Mass Spectrometry

The pro-survival protein Bcl-xL is critical for the resistance of tumour cells to DNA damage. We have previously demonstrated, using a mouse cancer model, that oncogenic tyrosine kinase inhibition of DNA damage-induced Bcl-xL deamidation tightly correlates with T cell transformation in vivo, although the pathway to Bcl-xL deamidation remains unknown and its functional consequences unclear. We show here that rBcl-xL deamidation generates an iso-Asp(52)/iso-Asp(66) species that is unable to sequester pro-apoptotic BH3-only proteins such as Bim and Puma. DNA damage in thymocytes results in increased expression of the NHE-1 Na/H antiport, an event both necessary and sufficient for subsequent intracellular alkalinisation, Bcl-xL deamidation, and apoptosis. In murine thymocytes and tumour cells expressing an oncogenic tyrosine kinase, this DNA damage-induced cascade is blocked. Enforced intracellular alkalinisation mimics the effects of DNA damage in murine tumour cells and human B-lineage chronic lymphocytic leukaemia cells, thereby causing Bcl-xL deamidation and increased apoptosis. Our results define a signalling pathway leading from DNA damage to up-regulation of the NHE-1 antiport, to intracellular alkalanisation to Bcl-xL deamidation, to apoptosis, representing the first example, to our knowledge, of how deamidation of internal asparagine residues can be regulated in a protein in vivo. Our findings also suggest novel approaches to cancer therapy.

+view abstract PLoS biology, PMID: 17177603 2007

V Paranavitane, LR Stephens, PT Hawkins

PI3K signalling pathways link cell surface receptors to the control of several intracellular functions including cell growth, survival and movement. Filamins are important regulators of cortical actin structure and function. LL5beta is a filamin binding protein that is an effector of the PI3K signalling pathway. We define an N-terminal region of LL5beta that is responsible for binding to the C-terminus of filamins. Under conditions of very low PI3K activity, we show that this region, together with an additional domain of the protein, is responsible for localising the complex to punctate structures that are also decorated by L-FILIP (a protein previously characterised to bind filamin and accelerate its destruction). Under conditions of significant PI3K activity, PtdIns(3,4,5)P(3) binding to the C-terminal PH domain in LL5beta prevents localisation to these structures. These observations start to define the basis for PI3K regulation of filamin through LL5beta.

+view abstract Cellular signalling, PMID: 17174070 2007

GJ Ferguson, L Milne, S Kulkarni, T Sasaki, S Walker, S Andrews, T Crabbe, P Finan, G Jones, S Jackson, M Camps, C Rommel, M Wymann, E Hirsch, P Hawkins, L Stephens Signalling,Bioinformatics

The directional movement of cells in a gradient of external stimulus is termed chemotaxis and is important in many aspects of development and differentiated cell function. Phophoinositide 3-kinases (PI(3)Ks) are thought to have critical roles within the gradient-sensing machinery of a variety of highly motile cells, such as mammalian phagocytes, allowing these cells to respond quickly and efficiently to shallow gradients of soluble stimuli. Our analysis of mammalian neutrophil migration towards ligands such as fMLP shows that, although PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) accumulate in a PI(3)Kgamma-dependent fashion at the up-gradient leading-edge, this signal is not required for efficient gradient-sensing and gradient-biased movement. PI(3)Kgamma activity is however, a critical determinant of the proportion of cells that can move, that is, respond chemokinetically, in reaction to fMLP. Furthermore, this dependence of chemokinesis on PI(3)Kgamma activity is context dependent, both with respect to the state of priming of the neutrophils and the type of surface on which they are migrating. We propose this effect of PI(3)Kgamma is through roles in the regulation of some aspects of neutrophil polarization that are relevant to movement, such as integrin-based adhesion and the accumulation of polymerized (F)-actin at the leading-edge.

+view abstract Nature cell biology, PMID: 17173040 2007

W Davies, T Humby, AR Isles, PS Burgoyne, LS Wilkinson

The loss of all, or part of an X chromosome, in Turner syndrome (TS, 45,XO) results in deficits in attentional functioning.

+view abstract Biological psychiatry, PMID: 17161381 2007

JA Taylor, ML Goubillon, KD Broad, JE Robinson

The endogenous opioid peptides have been implicated in mediating the actions of estrogen and progesterone on GnRH release. We used in situ hybridization histochemistry to determine whether steroid-induced changes in GnRH/LH release in the female sheep are associated with changes in the cellular mRNA content of the precursors for beta-endorphin (pro-opiomelanocortin; POMC) and met-enkephalin (pre-proenkephalin; PENK). Two specific hypotheses were tested. First, that the inhibitory actions of progesterone are associated with an increase in opioid gene expression in specific hypothalamic nuclei. Our data support this hypothesis. Thus, an increase in progesterone was associated with increased POMC gene expression in the arcuate nucleus and PENK in the paraventricular nucleus. Further, the increase in POMC was restricted to regions of the arcuate nucleus that contain steroid sensitive beta-endorphin neurons. Our second hypothesis, that gene expression for the two opioid precursors would decrease prior to the start of the estradiol-stimulated GnRH surge, was not supported. Rather, POMC (but not PENK) gene expression in the arcuate nucleus was significantly higher in estradiol-treated animals than controls at the peak of the GnRH surge. These data suggest that beta-endorphin neurons in subdivisions of the arcuate nucleus and enkephalin neurons in the paraventricular nucleus are part of the neural network by which progesterone inhibits LH release. While enkephalin neurons may not play a role in estrogen positive feedback, increases in POMC mRNA in the arcuate nucleus at the time of the GnRH peak may be important for replenishing beta-endorphin stores and terminating estrous behavior.

+view abstract Biology of reproduction, PMID: 17151352 2007

J Wu, K Kendrick, J Feng

A correlation multi-variate analysis of variance (MANOVA) test to statistically analyze changing patterns of multi-electrode array (MEA) electrophysiology data is developed. The approach enables us not only to detect significant mean changes, but also significant correlation changes in response to external stimuli. Furthermore, a method to single out hot-spot variables in the MEA data both for the mean and correlation is provided. Our methods have been validated using both simulated spike data and recordings from sheep inferotemporal cortex.

+view abstract Journal of neuroscience methods, PMID: 17137633 2007

Open Access
H Guillou, C L茅cureuil, KE Anderson, S Suire, GJ Ferguson, CD Ellson, A Gray, N Divecha, PT Hawkins, LR Stephens Signalling

We describe a novel approach to the relative quantification of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] and its application to measure, in neutrophils, the activation of phosphoinositide 3-kinase (PI3K). This protein-lipid overlay-based assay allowed us to confirm and extend the observations, first, that N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation of primed human neutrophils leads to a transient and biphasic increase in PtdIns(3,4,5)P(3) levels and, second, that the ability of fMLP to stimulate PtdIns(3,4,5)P(3) accumulation in neutrophils isolated from mice carrying a Ras-insensitive ('DASAA') knock-in of PI3Kgamma (p110gamma(DASAA/DASAA)) is substantially dependent on the Ras binding domain of PI3Kgamma.

+view abstract Journal of lipid research, PMID: 17130283 2007

Open Access
V Mirenda, SJ Jarmin, R David, J Dyson, D Scott, Y Gu, RI Lechler, K Okkenhaug, FM Marelli-Berg Immunology

Productive T-cell immunity requires both the activation and the migration of specific T cells to the antigenic tissue. The costimulatory molecule CD28 plays an essential role in the initiation of T-cell-mediated immunity. We investigated the possibility that CD28 may also regulate migration of primed T cells to target tissue. In vitro, CD28-mediated signals enhanced T-cell transendothelial migration, integrin clustering, and integrin-mediated migration. In vivo, T cells bearing a mutation in the CD28 cytoplasmic domain, which abrogates PI3K activation, displayed normal clonal expansion but defective localization to antigenic sites following antigenic rechallenge. Importantly, antibody-mediated CD28 stimulation led to unregulated memory T-cell migration to extra-lymphoid tissue, which occurred independently of T-cell receptor (TCR)-derived signals and homing-receptor expression. Finally, we provide evidence that CD28- and CTLA-4-mediated signals exert opposite effects on T-cell trafficking in vivo. These findings highlight a novel physiologic function of CD28 that has crucial implications for the therapeutic manipulation of this and other costimulatory molecules.

+view abstract Blood, PMID: 17119120 2007

Open Access
Le Nov猫re N Signalling

The field of Computational Systems Neurobiology is maturing quickly. If one wants it to fulfil its central role in the new Integrative Neurobiology, the reuse of quantitative models needs to be facilitated. The community has to develop standards and guidelines in order to maximise the diffusion of its scientific production, but also to render it more trustworthy. In the recent years, various projects tackled the problems of the syntax and semantics of quantitative models. More recently the international initiative BioModels.net launched three projects: (1) MIRIAM is a standard to curate and annotate models, in order to facilitate their reuse. (2) The Systems Biology Ontology is a set of controlled vocabularies aimed to be used in conjunction with models, in order to characterise their components. (3) BioModels Database is a resource that allows biologists to store, search and retrieve published mathematical models of biological interests. We expect that those resources, together with the use of formal languages such as SBML, will support the fruitful exchange and reuse of quantitative models.

+view abstract BMC neuroscience, PMID: 17118155 2006

David DC, Ittner LM, Gehrig P, Nergenau D, Shepherd C, Halliday G, G枚tz J Signalling

Alzheimer's disease (AD) is characterized by Abeta peptide-containing plaques and tau-containing neurofibrillary tangles (NFTs). Both pathologies have been combined by crossing Abeta plaque-forming APP mutant mice with NFT-forming P301L tau mutant mice or by stereotaxically injecting beta-amyloid peptide 1-42 (Abeta42) into brains of P301L tau mutant mice. In cell culture, Abeta42 induces filamentous tau aggregates. To understand which processes are disrupted by Abeta42 in the presence of tau aggregates, we applied comparative proteomics to Abeta42-treated P301L tau-expressing neuroblastoma cells and the amygdala of P301L tau transgenic mice stereotaxically injected with Abeta42. Remarkably, a significant fraction of proteins altered in both systems belonged to the same functional categories, i.e. stress response and metabolism. We also identified model-specific effects of Abeta42 treatment such as differences in cell signaling proteins in the cellular model and of cytoskeletal and synapse associated proteins in the amygdala. By Western blotting (WB) and immunohistochemistry (IHC), we were able to show that 72% of the tested candidates were altered in human AD brain with a major emphasis on stress-related unfolded protein responsive candidates. These data highlight these processes as potentially important initiators in the Abeta42-mediated pathogenic cascade in AD and further support the role of unfolded proteins in the course of AD.

+view abstract Proteomics, PMID: 17111439

SD Turner, D Yeung, K Hadfield, SJ Cook, DR Alexander Signalling

Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

+view abstract Cellular signalling, PMID: 17110082 2007

WM Brooks, PJ Lynch, CC Ingle, A Hatton, PC Emson, RL Faull, MP Starkey

The successfully functioning brain is a heavy user of metabolic energy. Alzheimer's disease, in which cognitive faculties decline, may be due, at least in part, to metabolic insufficiency. Using microarray analysis and quantitative RT-PCR, the expression of mRNA transcripts involved in glucose metabolism was investigated in Alzheimer's diseased post-mortem human hippocampal samples. Of the 51 members of the glycolytic, tricarboxylic acid cycle, oxidative phosphorylation, and associated pathways investigated by qPCR, 15 were confirmed to be statistically significantly (p<0.05) down-regulated in Alzheimer's disease. This finding suggests that reductions in the levels of transcripts encoded by genes that participate in energy metabolism may be involved in Alzheimer's disease.

+view abstract Brain research, PMID: 17109828 2007

Open Access
S Roessler, I Gy枚ry, S Imhof, M Spivakov, RR Williams, M Busslinger, AG Fisher, R Grosschedl

Early differentiation of B lymphocytes requires the function of multiple transcription factors that regulate the specification and commitment of the lineage. Loss- and gain-of-function experiments have provided important insight into the transcriptional control of B lymphopoiesis, whereby E2A was suggested to act upstream of EBF1 and Pax5 downstream of EBF1. However, this simple hierarchy cannot account for all observations, and our understanding of a presumed regulatory network, in which transcription factors and signaling pathways operate, is limited. Here, we show that the expression of the Ebf1 gene involves two promoters that are differentially regulated and generate distinct protein isoforms. We find that interleukin-7 signaling, E2A, and EBF1 activate the distal Ebf1 promoter, whereas Pax5, together with Ets1 and Pu.1, regulates the stronger proximal promoter. In the absence of Pax5, the function of the proximal Ebf1 promoter and accumulation of EBF1 protein are impaired and the replication timing and subcellular localization of the Ebf1 locus are altered. Taken together, these data suggest that the regulation of Ebf1 via distinct promoters allows for the generation of several feedback loops and the coordination of multiple determinants of B lymphopoiesis in a regulatory network.

+view abstract Molecular and cellular biology, PMID: 17101802 2007

S Higashi, DJ Moore, RE Colebrooke, S Biskup, VL Dawson, H Arai, TM Dawson, PC Emson

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) have been identified as the cause of familial Parkinson's disease (PD) at the PARK8 locus. To begin to understand the physiological role of LRRK2 and its involvement in PD, we have investigated the distribution of LRRK2 mRNA and protein in the adult mouse brain. In situ hybridization studies indicate sites of mRNA expression throughout the mouse brain, with highest levels of expression detected in forebrain regions, including the cerebral cortex and striatum, intermediate levels observed in the hippocampus and cerebellum, and low levels in the thalamus, hypothalamus and substantia nigra. Immunohistochemical studies demonstrate localization of LRRK2 protein to neurones in the cerebral cortex and striatum, and to a variety of interneuronal subtypes in these regions. Furthermore, expression of LRRK2 mRNA in the striatum of VMAT2-deficient mice is unaltered relative to wild-type littermate controls despite extensive dopamine depletion in this mouse model of parkinsonism. Collectively, our results demonstrate that LRRK2 is present in anatomical brain regions of direct relevance to the pathogenesis of PD, including the nigrostriatal dopaminergic pathway, in addition to other regions unrelated to PD pathology, and is likely to play an important role in the normal function of telencephalic forebrain neurones and other neuronal populations.

+view abstract Journal of neurochemistry, PMID: 17101029 2007

Huang JT, Leweke FM, Oxley D, Wang L, Harris N, Koethe D, Gerth CW, Nolden BM, Gr.oss S, Schreiber D, Reed B, Bahn S Mass Spectrometry

Psychosis is a severe mental condition that is characterized by a loss of contact with reality and is typically associated with hallucinations and delusional beliefs. There are numerous psychiatric conditions that present with psychotic symptoms, most importantly schizophrenia, bipolar affective disorder, and some forms of severe depression referred to as psychotic depression. The pathological mechanisms resulting in psychotic symptoms are not understood, nor is it understood whether the various psychotic illnesses are the result of similar biochemical disturbances. The identification of biological markers (so-called biomarkers) of psychosis is a fundamental step towards a better understanding of the pathogenesis of psychosis and holds the potential for more objective testing methods.

+view abstract PLoS medicine, PMID: 17090210 2006

Open Access
Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E, Rowan WC, Sancho S, Walker LS, Vanhaesebroeck B, Okkenhaug K Immunology

CD4+CD25+Foxp3+ regulatory T cells (Tregs) contribute to the maintenance of peripheral tolerance by inhibiting the expansion and function of conventional T cells. Treg development and homeostasis are regulated by the Ag receptor, costimulatory receptors such as CD28 and CTLA-4, and cytokines such as IL-2, IL-10, and TGF-beta. Here we show that the proportions of Tregs in the spleen and lymph nodes of mice with inactive p110delta PI3K (p110deltaD910A/D910A) are reduced despite enhanced Treg selection in the thymus. p110deltaD910A/D910A CD4+CD25+Foxp3+ Tregs showed attenuated suppressor function in vitro and failed to secrete IL-10. In adoptive transfer experiments, p110deltaD910A/D910A T cells failed to protect against experimental colitis. The identification of p110delta as an intracellular signaling protein that regulates the activity of CD4+CD25+Foxp3+ Tregs may facilitate the further elucidation of the molecular mechanisms responsible for Treg-mediated suppression.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 17082571 2006

Open Access
Wilson S, Wakelam MJ, Hobbs RF, Ryan AV, Dunn JA, Redman VD, Patrick F, Colbourne L, Martin A, Ismail T Signalling

Bowel cancer is common and is a major cause of death. Meta-analysis of randomised controlled trials estimates that screening for colorectal cancer using faecal occult blood (FOB) test reduces mortality from colorectal cancer by 16%. However, FOB testing has a low positive predictive value, with associated unnecessary cost, risk and anxiety from subsequent investigation, and is unacceptable to a proportion of the target population. Increased levels of an enzyme called matrix metalloproteinase 9 (MMP-9) have been found to be associated with colorectal cancer, and this can be measured from a blood sample. Serum MMP-9 is potentially an accurate, low risk and cost-effective population screening tool. This study aims to evaluate the accuracy of serum MMP-9 as a test for colorectal cancer in a primary care population.

+view abstract BMC cancer, PMID: 17076885 2006

R Adalbert, A N贸gr谩di, A Szab贸, MP Coleman Signalling

The slow Wallerian degeneration gene (Wld(S)) delays Wallerian degeneration and axon pathology for several weeks in mice and rats. Interestingly, neuronal cell death is also delayed in some in vivo models, most strikingly in the progressive motoneuronopathy mouse. Here, we tested the hypothesis that Wld(S) has a direct protective effect on motoneurone cell bodies in vivo. Cell death was induced in rat L4 motoneurones by intravertebral avulsion of the corresponding ventral roots. This simultaneously removed most of the motor axon, minimizing the possibility that the protective effect toward axons could rescue cell bodies secondarily. There was no significant difference between the survival of motoneurones in control and Wld(S) rats, suggesting that the Wld(S) gene has no direct protective effect on cell bodies. We also tested for any delay in apoptotic motoneurone death following neonatal nerve injury in Wld(S) rats and found that, unlike Wld(S) mice, Wld(S) rats show no delay in cell death. However, the corresponding distal axons were preserved, confirming that motoneurone cell bodies and motor axons die by different mechanisms. Thus, Wld(S) does not directly prevent death of motoneurone cell bodies. It follows that the protection of neuronal cell bodies observed in several disease and injury models where axons or significant axonal stumps remain is most probably secondary to axonal protection.

+view abstract The European journal of neuroscience, PMID: 17074042 2006

Open Access
Kim DS, Franklyn JA, Smith VE, Stratford AL, Pemberton HN, Warfield A, Watkinson JC, Ishmail T, Wakelam MJ, McCabe CJ Signalling

Genetic instability (GI) is a hallmark feature of tumor development. Securin, also known as pituitary tumor transforming gene (PTTG), is a mitotic checkpoint protein which is highly expressed in numerous cancers, is associated with tumor invasiveness, and induces GI in thyroid cells. We used fluorescence inter-simple sequence repeat PCR to assess GI caused primarily by DNA breakage events in 19 colorectal tumors. GI values ranged significantly, with Dukes' stage C&D colorectal tumors exhibiting greater GI and higher securin expression than Dukes' stage A&B tumors. Consistent with these findings, we observed a dose-dependent increase in GI in HCT116 cells in response to securin overexpression, as well as in non-transformed human fibroblasts. As securin has been implicated in a novel DNA repair pathway in fission yeast, we investigated its potential role in chemotoxic DNA damage response pathways in mammalian cells, using host cell reactivation assays. Securin overexpression in HCT116 cells inhibited etoposide-induced double-stranded DNA damage repair activity, and repressed Ku heterodimer function. Additionally, we observed that securin and Ku70 showed a reciprocal cytosol-nuclear translocation in response to etoposide-induced dsDNA damage. Our data suggest that, by repressing Ku70 activity and inhibiting the non-homologous end-joining dsDNA repair pathway, securin may be a critical gene in the development of GI in colorectal cancer.

+view abstract Carcinogenesis, PMID: 17071631 2007

L Cousins, M Graham, R Tooze, C Carter, JR Miller, FM Powrie, GG Macpherson, GW Butcher Immunology

Many models of autoimmunity are associated with lymphopenia. Most involve a T-helper cell (Th)1-type disease, including the diabetic BioBreeding (BB) rat. To investigate the roles of identified susceptibility loci in disease pathogenesis, we bred PVG-RT1(u), lymphopenia (lyp)/lyp rats, congenic for the iddm1 (RT1(u)) and iddm2 (lyp, Gimap5(-/-)) diabetes susceptibility loci on the PVG background. Surprisingly, these rats developed a spontaneous, progressive, inflammatory bowel disease. To understand the disease pathogenesis, we undertook investigations at the genetic, histologic, and cellular levels.

+view abstract Gastroenterology, PMID: 17064701 2006

Open Access
Ryan AV, Wilson S, Wakelam MJ, Warmington SA, Dunn JA, Hobbs RF, Martin A, Ismail T Signalling

Bowel cancer is common and is a major cause of death. Most people with bowel symptoms who meet the criteria for urgent referral to secondary care will not be found to have bowel cancer, and some people who are found to have cancer will have been referred routinely rather than urgently. If general practitioners could better identify people who were likely to have bowel cancer or conditions that may lead to bowel cancer, the pressure on hospital clinics may be reduced, enabling these patients to be seen more quickly. Increased levels of an enzyme called matrix metalloproteinase 9 (MMP-9) have been found to be associated with such conditions, and this can be measured from a blood sample. This study aims to find out whether measuring MMP-9 levels could improve the appropriateness of urgent referrals for patients with bowel symptoms.

+view abstract BMC cancer, PMID: 17059590 2006

Open Access
AC Pearce, OJ McCarty, SD Calaminus, E Vigorito, M Turner, SP Watson Immunology

Vav proteins belong to the family of guanine-nucleotide-exchange factors for the Rho/Rac family of small G-proteins. In addition, they serve as important adapter proteins for the activation of PLCgamma (phospholipase Cgamma) isoforms by ITAM (immunoreceptor tyrosine-based activation motif) receptors, including the platelet collagen receptor GPVI (glycoprotein VI). Vav proteins are also regulated downstream of integrins, including the major platelet integrin alphaIIbbeta3, which has recently been shown to regulate PLCgamma2. In the present study, we have investigated the role of Vav family proteins in filopodia and lamellipodia formation on fibrinogen using platelets deficient in Vav1 and Vav3. Wild-type mouse platelets undergo a limited degree of spreading on fibrinogen, characterized by the formation of numerous filopodia and limited lamellipodia structures. Platelets deficient in Vav1 and Vav3 exhibit reduced filopodia and lamellipodia formation during spreading on fibrinogen. This is accompanied by reduced alphaIIbbeta3-mediated PLCgamma2 tyrosine phosphorylation and reduced Ca(2+) mobilization. In contrast, the G-protein agonist thrombin stimulates full spreading of control and Vav1/3-deficient platelets. Consistent with this, stimulation of F-actin (filamentous actin) formation and Rac activation by thrombin is not altered in Vav-deficient cells. These results demonstrate that Vav1 and Vav3 are required for optimal spreading and regulation of PLCgamma2 by integrin alphaIIbbeta3, but that their requirement is by-passed upon G-protein receptor activation.

+view abstract The Biochemical journal, PMID: 17054426 2007

CJ Chalmers, R Gilley, HN March, K Balmanno, Cook S Signalling

The duration of ERK1/2 activation influences the nature of the biological response to agonist. Members of the AP-1 transcription factor family are well known targets of the ERK1/2 pathway and are expressed in a temporally coordinated fashion during cell cycle re-entry. In CCl39 fibroblasts, sustained ERK1/2 activation is required for the expression of Fra-1, Fra-2, c-Jun and JunB, whereas expression of c-Fos is still strongly induced even in response to transient ERK activation. However, the significance of this pattern of expression for AP-1 activity has not been addressed. Here we show that growth factor stimulated activation of the C-terminal c-Fos transactivation domain (TAD) serves as a sensor for ERK1/2 signal duration whereas the c-JunTAD is not responsive to growth factors. In addition, sustained ERK1/2 activation determines the duration of increases in AP-1 DNA binding complexes as well as their qualitative make up. Finally, this is reflected in both the duration and quantitative transcriptional output of stably integrated AP-1 reporter constructs, indicating that AP-1 activity is finely tuned to ERK1/2 signal duration. These results provide new insights into the importance of ERK1/2 signal duration in the regulation of AP-1 and provide an explanation for how differences in signal duration can lead to both quantitative and qualitative changes in gene expression.

+view abstract Cellular signalling, PMID: 17052890 2007

PM Horton, AU Nicol, KM Kendrick, JF Feng

We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.

+view abstract Journal of neuroscience methods, PMID: 17052762 2007