海角社区论坛

 

Filter

Publications

The 海角社区论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
McKenzie G, Ward G, Stallwood Y, Briend E, Papadia S, Lennard A, Turner M, Champion B, Hardingham GE Immunology

Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways.

+view abstract BMC cell biology, PMID: 16507111 2006

Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C, Const芒ncia M Epigenetics

Intrauterine growth and development can impact upon the long-term health of an individual. The fetus is dependent upon the placenta for its supply of nutrients and oxygen from the mother. In turn, the functional capacity of the placenta to supply that demand is under the control of the fetal and maternal genomes. Recent evidence suggests that imprinted genes, a class of genes found in placental mammals whose expression depends on their parental origin, have multiple roles in the placenta. The imprinted genes regulate the growth and transport capacity of the placenta, thereby controlling the supply of nutrients. They may also regulate the growth rate of fetal tissues directly, thereby controlling nutrient demand by the fetus. Recent studies using mice with deletions or disruption of imprinted genes with an altered balance between placental and fetal growth and changes in placental efficiency are indicative of feto-placental signalling of fetal nutrient demand. We propose that signalling mechanisms involving growth demand signals and nutrient transporters are likely to occur and are important for fine tuning normal fetal growth.

+view abstract Placenta, PMID: 16503350 2006

PD Varga-Weisz, PB Becker

Nucleosome-remodelling factors are key facilitators of chromatin dynamics. At the level of single nucleosomes, they are involved in nucleosome-repositioning, altering histone-DNA interactions, disassembly of nucleosomes, and the exchange of histones with variants of different properties. The fundamental nature of chromatin dictates that nucleosome-remodelling affects all aspects of eukaryotic DNA metabolism, but much less is known about the functional interactions of nucleosome-remodelling factors with folded chromatin fibres. Because remodelling machines are abundant constituents of eukaryotic nuclei and, therefore, have ample potential to interact with chromatin, they might also affect higher-order chromatin architecture. Recent observations support roles for nucleosome-remodelling factors at the supra-nucleosomal level.

+view abstract Current opinion in genetics & development, PMID: 16503135 2006

Voigt P, Dorner MB, Schaefer M Epigenetics

Phosphoinositide 3-kinase (PI3K) gamma has been implicated in a vast array of physiological settings including the activation of different leukocyte species and the regulation of myocardial contractility. Activation of PI3Kgamma is primarily mediated by Gbetagamma subunits of heterotrimeric G proteins, which are recognized by a p101 regulatory subunit. Here, we describe the identification and characterization of a novel regulatory subunit of PI3Kgamma, which we termed p87(PIKAP) (PI3Kgamma adapter protein of 87 kDa). It is homologous to p101 in areas that we have recently shown that they mediate binding to the catalytic p110gamma subunit and to Gbetagamma. Like p101, p87(PIKAP) binds to both p110gamma and Gbetagamma and mediates activation of p110gamma downstream of G protein-coupled receptors. In contrast to p101, p87(PIKAP) is highly expressed in heart and may therefore be crucial to PI3Kgamma cardiac function. Moreover, p87(PIKAP) and p101 are both expressed in dendritic cells, macrophages, and neutrophils, raising the possibility of regulatory subunit-dependent differences in PI3Kgamma signaling within the same cell type. We further provide evidence that p87(PIKAP) physically interacts with phosphodiesterase (PDE) 3B, suggesting that p87(PIKAP) is also involved in the recently described noncatalytic scaffolding interaction of p110gamma with PDE3B. However, coexpression of PDE3B and PI3Kgamma subunits was not sufficient to reconstitute the regulatory effect of PI3Kgamma on PDE3B activity observed in heart, implying further molecules to be present in the complex regulating PDE3B in heart.

+view abstract The Journal of biological chemistry, PMID: 16476736

Open Access
I Garcia-Murillas, T Pettitt, E Macdonald, H Okkenhaug, P Georgiev, D Trivedi, B Hassan, M Wakelam, P Raghu Signalling

An essential step in Drosophila phototransduction is the hydrolysis of phosphatidylinositol 4,5 bisphosphate PI(4,5)P2 by phospholipase Cbeta (PLCbeta) to generate a second messenger that opens the light-activated channels TRP and TRPL. Although the identity of this messenger remains unknown, recent evidence has implicated diacylglycerol kinase (DGK), encoded by rdgA, as a key enzyme that regulates its levels, mediating both amplification and response termination. In this study, we demonstrate that lazaro (laza) encodes a lipid phosphate phosphohydrolase (LPP) that functions during phototransduction. We demonstrate that the synergistic activity of laza and rdgA regulates response termination during phototransduction. Analysis of retinal phospholipids revealed a reduction in phosphatidic acid (PA) levels and an associated reduction in phosphatidylinositol (PI) levels. Together our results demonstrate the contribution of PI depletion to the rdgA phenotype and provide evidence that depletion of PI and its metabolites might be a key signal for TRP channel activation in vivo.

+view abstract Neuron, PMID: 16476663 2006

Schilstra MJ, Li L, Matthews J, Finney A, Hucka M, Le Nov猫re N Signalling

CellML and SBML are XML-based languages for storage and exchange of molecular biological and physiological reaction models. They use very similar subsets of MathML to specify the mathematical aspects of the models. CellML2SBML is implemented as a suite of XSLT stylesheets that, when applied consecutively, convert models expressed in CellML into SBML without significant loss of information. The converter is based on the most recent stable versions of the languages (CellML version 1.1; SBML Level 2 Version 1), and the XSLT used in the stylesheets adheres to the XSLT version 1.0 specification. Of all 306 models in the CellML repository in April 2005, CellML2SBML converted 91% automatically into SBML. Minor manual changes to the unit definitions in the originals raised the percentage of successful conversions to 96%.

+view abstract Bioinformatics (Oxford, England), PMID: 16473867 2006

Open Access
M Veldhoen, RJ Hocking, CJ Atkins, RM Locksley, B Stockinger Immunology

We describe de novo generation of IL-17-producing T cells from naive CD4 T cells, induced in cocultures of naive CD4 T cells and naturally occurring CD4+ CD25+ T cells (Treg) in the presence of TLR3, TLR4, or TLR9 stimuli. Treg can be substituted by TGFbeta1, which, together with the proinflammatory cytokine IL-6, supports the differentiation of IL-17-producing T cells, a process that is amplified by IL-1beta and TNFalpha. We could not detect a role for IL-23 in the differentiation of IL-17-producing T cells but confirmed its importance for their survival and expansion. Transcription factors GATA-3 and T-bet, as well as its target Hlx, are absent in IL-17-producing T cells, and they do not express the negative regulator for TGFbeta signaling, Smad7. Our data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation of IL-17-producing T cells.

+view abstract Immunity, PMID: 16473830 2006

CM Williamson, MD Turner, ST Ball, WT Nottingham, P Glenister, M Fray, Z Tymowska-Lalanne, A Plagge, N Powles-Glover, G Kelsey, M Maconochie, J Peters Epigenetics

Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.

+view abstract Nature genetics, PMID: 16462745 2006

Siggs OM, Makaroff LE, Liston A Immunology

The generation of T cell receptor (TCR) sequence diversity is the strength of adaptive immunity, yet is also the Achilles' heel. To purge highly self-reactive T cells from the immune system, generation of diversity has coevolved with a mechanism of negative selection. Recent studies have revealed new insights addressing the why and how of negative selection by examining situations in which negative selection has failed in human and animals models of autoimmunity. Both thymocyte extrinsic and intrinsic mechanisms are required to restrict the TCR repertoire to a non-autoreactive set. Negative selection also ensures that T cells emerge with receptors that are focussed on the peptide moiety of MHC-peptide complexes.

+view abstract Current opinion in immunology, PMID: 16459069 2006

Open Access
R Afshar, S Pierce, DJ Bolland, A Corcoran, EM Oltz

The assembly of Ag receptor genes by V(D)J recombination is regulated by transcriptional promoters and enhancers which control chromatin accessibility at Ig and TCR gene segments to the RAG-1/RAG-2 recombinase complex. Paradoxically, germline deletions of the IgH enhancer (Emu) only modestly reduce D(H)-->J(H) rearrangements when assessed in peripheral B cells. However, deletion of Emu severely impairs recombination of V(H) gene segments, which are located over 100 kb away. We now test two alternative explanations for the minimal effect of Emu deletions on primary D(H)-->J(H) rearrangement: 1) Accessibility at the D(H)J(H) cluster is controlled by a redundant cis-element in the absence of Emu. One candidate for this element lies 5' to D(Q52) (PD(Q52)) and exhibits promoter/enhancer activity in pre-B cells. 2) In contrast to endpoint B cells, D(H)-->J(H) recombination may be significantly impaired in pro-B cells from enhancer-deficient mice. To elucidate the roles of PD(Q52) and Emu in the regulation of IgH locus accessibility, we generated mice with targeted deletions of these elements. We report that the defined PD(Q52) promoter is dispensable for germline transcription and recombination of the D(H)J(H) cluster. In contrast, we demonstrate that Emu directly regulates accessibility of the D(H)J(H) region. These findings reveal a significant role for Emu in the control mechanisms that activate IgH gene assembly and suggest that impaired V(H)-->D(H)J(H) rearrangement in enhancer-deficient cells may be a downstream consequence of the primary block in D(H)-->J(H) recombination.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 16456003 2006

A Varanou, SL Withington, L Lakasing, C Williamson, GJ Burton, M Hemberger Epigenetics

The typically lysosomal family of cysteine cathepsin proteases has been implicated in the development of the placenta in particular, from studies in the mouse. Here, we analysed overall expression, regulation and presence of transcript isoforms of cysteine cathepsins during human extra-embryonic development. All 11 family members are expressed in human placental tissues, and many are differentially regulated during gestation. Several cysteine cathepsins exhibit deregulated expression levels in placentas from pregnancies complicated by pre-eclampsia. The localization of cathepsin B predominantly in placental and decidual macrophages suggests a role in the physiological functions of these cells in mediating villous angiogenesis and decidual apoptosis. Cathepsin L levels are highest in a subpopulation of invasive cytotrophoblasts. Reflecting the expression pattern of two murine cathepsins, these data give insights into the evolutionary conservation of cathepsin function that is not necessarily exhibited by gene pairs defined by highest sequence similarity. Furthermore, cathepsin L protein localization in uterine epithelial cells demonstrates the in vivo occurrence of intranuclear cathepsin L isoforms. The zonally restricted expression of cathepsin in the syncytiotrophoblast may be important for the metabolic breakdown of maternal nutrients. Overall, the distribution and abnormal expression levels in pre-eclamptic placentas indicate that cysteine cathepsins may play important roles during normal placentation and in the etiology of pre-eclampsia.

+view abstract Journal of molecular medicine (Berlin, Germany), PMID: 16440214 2006

Open Access
Krugmann S, Andrews S, Stephens L, Hawkins PT Signalling

Rho and Arf family small GTPases control dynamic actin rearrangements and vesicular trafficking events. ARAP3 is a dual GAP for RhoA and Arf6 that is regulated by phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], a product of the phosphoinositide 3-kinase (PI3K) signalling pathway. To investigate the physiological function of ARAP3, we used an RNAi-based approach in an endothelial cell model. ARAP3-deficient cells showed increased activities of RhoA and Arf6. Phenotypically, they were more rounded than control counterparts and displayed very fine stress fibres. ARAP3-deficient cells were not capable of producing lamellipodia upon growth factor stimulation, a process known to depend on PI3K and Rac activities. Rac was transiently activated in stimulated ARAP3 RNAi cells although its cellular localisation was altered, a likely consequence of increased Arf6 activity. We conclude that ARAP3 recruitment to sites of elevated PtdIns(3,4,5)P(3) is crucial to allow localised inactivation of RhoA and cycling of Arf6, both of which are necessary to allow growth factor-stimulated formation of lamellipodia.

+view abstract Journal of cell science, PMID: 16418224 2006

Powner DJ, Pettitt TR, Wakelam MJ Signalling

Phospholipase D (PLD) is an enzyme implicated in the regulation of both exocytic and endocytic vesicle trafficking as well as many other processes. Consistent with this, the small GTPase Arf6 and regulated changes in inositol phospholipids levels are two factors that regulate both PLD and vesicle trafficking. Here we describe three methodologies through which the activation of PLD by Arf6 and inositol phospholipids may be investigated. The first method described is an in vitro protocol that allows the analysis of purified proteins or cell lysates. Furthermore, this protocol can be used to analyze the effects of different inositol phospholipids by changing the composition of the substrate vesicle. The major advantage of this protocol lies in the ability to analyze the effects of direct interactions on PLD activation by using pure proteins and lipids. The other two methods are in vivo protocols for the analysis of PLD activation in response to extracellular stimuli. Modification of cellular composition using overexpression/deletion or knockout of specific genes can be utilized with these protocols to characterize PLD activation pathways. The first of these methods uses the detection of radiolabeled PLD products and can be used for most cell types whereas the second of these two protocols is used to measure PLD products when radiolabeling of cells is not possible, such as freshly isolated cells that will not survive long enough to attain radiochemical equilibrium.

+view abstract Methods in enzymology, PMID: 16413286 2005

Open Access
P Arnaud, K Hata, M Kaneda, E Li, H Sasaki, R Feil, G Kelsey Epigenetics

The cis-acting regulatory sequences of imprinted genes are subject to germline-specific epigenetic modifications, the imprints, so that this class of genes is exclusively expressed from either the paternal or maternal allele in offspring. How genes are differentially marked in the germlines remains largely to be elucidated. Although the exact nature of the mark is not fully known, DNA methylation [at differentially methylated regions (DMRs)] appears to be a major, functional component. Recent data in mice indicate that Dnmt3a, an enzyme with de novo DNA methyltransferase activity, and the related protein Dnmt3L are required for methylation of imprinted loci in germ cells. Maternal methylation imprints, in particular, are strictly dependent on the presence of Dnmt3L. Here, we show that, unexpectedly, methylation imprints can be present in some progeny of Dnmt3L(-/-) females. This incomplete penetrance of the effect of Dnmt3L deficiency in oocytes is neither embryo nor locus specific, but stochastic. We establish that, when it occurs, methylation is present in both embryo and extra-embryonic tissues and results in a functional imprint. This suggests that this maternal methylation is inherited, directly or indirectly, from the gamete. Our results indicate that in the absence of Dnmt3L, factors such as Dnmt3a and possibly others can act alone to mark individual DMRs. However, establishment of appropriate maternal imprints at all loci does require a combination of all factors. This observation can provide a basis to understand mechanisms involved in some sporadic cases of imprinting-related diseases and polymorphic imprinting in human.

+view abstract Human molecular genetics, PMID: 16403808 2006

Open Access
Gillingwater TH, Wishart TM, Chen PE, Haley JE, Robertson K, MacDonald SH, Middleton S, Wawrowski K, Shipston MJ, Melmed S, Wyllie DJ, Skehel PA, Coleman MP, Ribchester RR Signalling

Wallerian degeneration of injured neuronal axons and synapses is blocked in Wld(S) mutant mice by expression of an nicotinamide mononucleotide adenylyl transferase 1 (Nmnat-1)/truncated-Ube4b chimeric gene. The protein product of the Wld(S) gene localizes to neuronal nuclei. Here we show that Wld(S) protein expression selectively alters mRNA levels of other genes in Wld(S) mouse cerebellum in vivo and following transfection of human embryonic kidney (HEK293) cells in vitro. The largest changes, identified by microarray analysis and quantitative real-time polymerase chain reaction of cerebellar mRNA, were an approximate 10-fold down-regulation of pituitary tumour-transforming gene-1 (pttg1) and an approximate 5-fold up-regulation of a structural homologue of erythroid differentiation regulator-1 (edr1l-EST). Transfection of HEK293 cells with a Wld(S)-eGFP construct produced similar changes in mRNA levels for these and seven other genes, suggesting that regulation of gene expression by Wld(S) is conserved across different species, including humans. Similar modifications in mRNA levels were mimicked for some of the genes (including pttg1) by 1 mm nicotinamide adenine dinucleotide (NAD). However, expression levels of most other genes (including edr1l-EST) were insensitive to NAD. Pttg1(-/-) mutant mice showed no neuroprotective phenotype. Transfection of HEK293 cells with constructs comprising either full-length Nmnat-1 or the truncated Ube4b fragment (N70-Ube4b) demonstrated selective effects of Nmnat-1 (down-regulated pttg1) and N70-Ube4b (up-regulated edr1l-EST) on mRNA levels. Similar changes in pttg1 and edr1l-EST were observed in the mouse NSC34 motor neuron-like cell line following stable transfection with Wld(S). Together, the data suggest that the Wld(S) protein co-regulates expression of a consistent subset of genes in both mouse neurons and human cells. Targeting Wld(S)-induced gene expression may lead to novel therapies for neurodegeneration induced by trauma or by disease in humans.

+view abstract Human molecular genetics, PMID: 16403805 2006

Open Access
Le Nov猫re N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M Signalling

BioModels Database (http://www.ebi.ac.uk/biomodels/), part of the international initiative BioModels.net, provides access to published, peer-reviewed, quantitative models of biochemical and cellular systems. Each model is carefully curated to verify that it corresponds to the reference publication and gives the proper numerical results. Curators also annotate the components of the models with terms from controlled vocabularies and links to other relevant data resources. This allows the users to search accurately for the models they need. The models can currently be retrieved in the SBML format, and import/export facilities are being developed to extend the spectrum of formats supported by the resource.

+view abstract Nucleic acids research, PMID: 16381960 2006

Open Access
Donizelli M, Djite MA, Le Nov猫re N Signalling

Ligand-gated ion channels form transmembrane ionic pores controlled by the binding of chemicals. The LGICdb aims to be a non-redundant, manually curated resource offering access to the large number of subunits composing extracellularly activated ligand-gated ion channels, such as nicotinic, ATP, GABA and glutamate ionotropic receptors. Composed of more than 500 human curated entries, the XML native database has been relocated in 2004 to the EBI. Its facilities have been enhanced with a new search system, customized multiple sequence alignments and manipulation of protein structures (http://www.ebi.ac.uk/compneur-srv/LGICdb/). Despite the vast improvement of general sequence resources, the LGICdb still provide sequences unavailable elsewhere.

+view abstract Nucleic acids research, PMID: 16381861 2006

Vigorito E, Kovesdi D, Turner M Immunology

Antigens coated with complement fragments coligate the B cell receptor (BCR) with the CD21/CD19 complex which results in synergistic activation of B cells. Previous studies identified PI3K, Vav proteins and PLCgamma as important components of this synergy. We now show that protein kinase D (also known as PKCmu) is also a point of convergence of these signalling pathways. We found that PKD activation upon BCR engagement or coligation of the BCR with CD19 is entirely dependent on PI3K and PLCgamma but differ in the requirement for Vav proteins. Whereas PKD activation is Vav1 and Vav2 dependent in response to BCR cross-linking, PKD activation is sensitive to the lack of Vav1 under synergistic stimulation of BCR and CD19. These findings show that Vav proteins and PI3K regulation of PLCgamma contributes to the activation of PKD in response to BCR and or CD19 cross-linking.

+view abstract Cellular signalling, PMID: 16380231 2006

Open Access
J Houseley, D Tollervey Epigenetics

Recent analyses have shown that the activity of the yeast nuclear exosome is stimulated by the Trf4p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex. Here, we report that strains lacking the Rrp6p component of the nuclear exosome accumulate polyadenylated forms of many different ribosomal RNA precursors (pre-rRNAs). This polyadenylation is reduced in strains lacking either the poly(A) polymerase Trf4p or its close homologue Trf5p. In contrast, polyadenylation is enhanced by overexpression of Trf5p. Polyadenylation is also markedly increased in strains lacking the RNA helicase Mtr4p, indicating that it is required to couple poly(A) polymerase activity to degradation. Tandem affinity purification-tagged purified Trf5p showed polyadenylation activity in vitro, which was abolished by a double point mutation in the predicted catalytic site. Trf5p co-purified with Mtr4p and Air1p, indicating that it forms a complex, designated TRAMP5, that has functions that partially overlap with the TRAMP complex.

+view abstract EMBO reports, PMID: 16374505 2006

Open Access
H Laser, L Conforti, G Morreale, TG Mack, M Heyer, JE Haley, TM Wishart, B Beirowski, SA Walker, G Haase, A Celik, R Adalbert, D Wagner, D Grumme, RR Ribchester, M Plomann, MP Coleman Signalling

Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.

+view abstract Molecular biology of the cell, PMID: 16371511 2006

Open Access
Const芒ncia M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley CP, Reik W, Fowden A Epigenetics

The mammalian fetus is unique in its dependence during gestation on the supply of maternal nutrients through the placenta. Maternal supply and fetal demand for nutrients need to be fine tuned for healthy growth and development of the fetus along its genetic trajectory. An altered balance between supply and demand can lead to deviations from this trajectory with long-term consequences for health. We have previously shown that in a knockout lacking the imprinted placental-specific Igf2 transcript (P0), growth of the placenta is compromised from early gestation but fetal growth is normal until late gestation, suggesting functional adaptation of the placenta to meet the fetal demands. Here, we show that placental transport of glucose and amino acids are increased in the Igf2 P0(+/-) null and that this up-regulation of transport occurs, at least in part, through increased expression of the transporter genes Slc2a3 and Slc38a4, the imprinted member of the System A amino acid transporter gene family. Decreasing fetal demand genetically by removal of fetal Igf2 abolished up-regulation of both transport systems and reduced placental System A amino acid transport activity and expression of Slc38a2 in late gestation. Our results provide direct evidence that the placenta can respond to fetal demand signals through regulation of expression of specific placental transport systems. Thus, crosstalk between an imprinted growth demand gene (Igf2) and placental supply transporter genes (Slc38a4, Slc38a2, and Slc2a3) may be a component of the genetic control of nutrient supply and demand during mammalian development.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 16365304 2005

Webster J, Oxley D Mass Spectrometry

Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) is now routinely used in many laboratories for the rapid and sensitive identification of proteins by peptide mass fingerprinting (PMF). We describe a simple protocol that can be performed in a standard biochemistry laboratory, whereby proteins separated by one- or two-dimensional gel electrophoresis can be identified at femtomole levels. The procedure involves excision of the spot or band from the gel, washing and de-staining, reduction and alkylation, in-gel trypsin digestion, MALDI-TOF MS of the tryptic peptides, and database searching of the PMF data. Up to 96 protein samples can easily be manually processed at one time by this method.

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 16350956 2005

Le Nov猫re N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL Signalling

Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models, it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.

+view abstract Nature biotechnology, PMID: 16333295 2005

Reik W, Ferguson-Smith AC

+view abstract Nature, PMID: 16292295 2005