º£½ÇÉçÇøÂÛ̳

Houseley Group

Houseley Group
Houseley Group
Jon Houseley
Group Leader and Head of Knowledge Exchange & Commercialisation
Houseley Group

Research Summary

We study the mechanisms by which cells learn to thrive in new environments.
 
From yeast caught by the wind and scattered across the landscape or plankton dwelling in increasingly acidified oceans to malignant cells facing modern targeted anticancer drugs, cells often face a stark choice – adapt or die.
 
We study the mechanisms by which cells adapt to new environments. A major focus is the unexpected ability of cells to change specific parts of their genomes in response to particular environments. The ability to stimulate mutation at the right time and place is likely to allow organisms to evolve and adapt much faster than we might expect, and such mechanisms have clear medical importance.
 
Attempting adaptive change is dangerous for any organism, and must be tightly controlled within the life cycle. We are starting to discover connections between adaptation and ageing; we have found that cellular ageing can facilitate adaptation, and conversely we see evidence that the drive to adapt to the environment seems to impact the ageing process.
 

Latest Publications

Open Access
Keszthelyi A, Mansoubi S, Whale A, Houseley J, Baxter J Epigenetics

The fork protection complex (FPC), composed of Mrc1, Tof1, and Csm3, supports rapid and stable DNA replication. Here, we show that FPC activity also introduces DNA damage by increasing DNA topological stress during replication. Mrc1 action increases DNA topological stress during plasmid replication, while Mrc1 or Tof1 activity causes replication stress and DNA damage within topologically constrained regions. We show that the recruitment of Top1 to the fork by Tof1 suppresses the DNA damage generated in these loci. While FPC activity introduces some DNA damage due to increased topological stress, the FPC is also necessary to prevent DNA damage in long replicons across the genome, indicating that the FPC is required for complete and faithful genome duplication. We conclude that FPC regulation must balance ensuring full genome duplication through rapid replication with minimizing the consequential DNA topological stress-induced DNA damage caused by rapid replication through constrained regions.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 39589889

Picco G, Rao Y, Al Saedi A, Lee Y, Vieira SF, Bhosle S, May K, Herranz-Ors C, Walker SJ, Shenje R, Dincer C, Gibson F, Banerjee R, Hewitson Z, Werner T, Cottom JE, Peng Y, Deng N, Zhang Y, Nartey EN, Nickels L, Landis P, Conticelli D, McCarten K, Bush J, Sharma M, Lightfoot H, House D, Milford E, Grant EK, Glogowski MP, Wagner CD, Bantscheff M, Rutkowska-Klute A, , Zappacosta F, Pettinger J, Barthorpe S, Eberl HC, Jones BT, Schneck JL, Murphy DJ, Voest EE, Taygerly JP, DeMartino MP, Coelho MA, Houseley J, Sharma G, Schwartz B, Garnett MJ Epigenetics

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.

+view abstract Cancer discovery, PMID: 38587317

Open Access
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J Epigenetics

The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.

+view abstract PLoS biology, PMID: 37643194

bioRxiv Manuscripts

Senescence in yeast is associated with chromosome XII fragments rather than ribosomal DNA circle accumulation

Andre Zylstra, Hanane Hadj-Moussa, Dorottya Horkai, Alex Whale, Baptiste Piguet, Jonathan Houseley

Dietary change without caloric restriction maintains a youthful profile in ageing yeast

Dorottya Horkai, Jonathan Houseley

Useful Information

From Wikipedia:







From The Economist:





Group Members

Jon Houseley

Group Leader and Head of Knowledge Exchange & Commercialisation

Hanane Hadj-Moussa

Postdoc Research Scientist

Kieron May

PhD Student

Baptiste Piguet

PhD Student

Megan Ulusan

Research Assistant

Alex Whale

Postdoc Research Scientist

Aimee Withers

Research Assistant

Amy Wolstenholme

Visiting Student