海角社区论坛

 

Filter

Publications

The 海角社区论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
Yang M, Zhu P, Cheema J, Bloomer R, Mikulski P, Liu Q, Zhang Y, Dean C, Ding Y Immunology

Cellular RNAs are heterogeneous with respect to their alternative processing and secondary structures, but the functional importance of this complexity is still poorly understood. A set of alternatively processed antisense non-coding transcripts, which are collectively called COOLAIR, are generated at the Arabidopsis floral-repressor locus FLOWERING LOCUS C (FLC). Different isoforms of COOLAIR influence FLC transcriptional output in warm and cold conditions. Here, to further investigate the function of COOLAIR, we developed an RNA structure-profiling method to determine the in vivo structure of single RNA molecules rather than the RNA population average. This revealed that individual isoforms of the COOLAIR transcript adopt multiple structures with different conformational dynamics. The major distally polyadenylated COOLAIR isoform in warm conditions adopts three predominant structural conformations, the proportions and conformations of which change after cold exposure. An alternatively spliced, strongly cold-upregulated distal COOLAIR isoform shows high structural diversity, in contrast to proximally polyadenylated COOLAIR. A hyper-variable COOLAIR structural element was identified that was complementary to the FLC transcription start site. Mutations altering the structure of this region changed FLC expression and flowering time, consistent with an important regulatory role of the COOLAIR structure in FLC transcription. Our work demonstrates that isoforms of non-coding RNA transcripts adopt multiple distinct and functionally relevant structural conformations, which change in abundance and shape in response to external conditions.

+view abstract Nature, PMID: 35978193

Zhao C, Biondic S, Vandal K, Bjorklund AK, Hagemann-Jensen M, Sommer TM, Canizo J, Clark S, Raymond P, Zenklusen D, Rivron N, Reik W, Petropoulos S Epigenetics

The pre-conceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of Assisted Reproductive Technologies (ART; ~25%), additives and adjuvants, such as glucocorticoids, are utilized to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study we present a comprehensive single-cell transcriptome, methylome and small RNA atlas in the day 7 human embryo. We demonstrate that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the TE lineage and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sub-lineages, supported by the presence of extravillous trophoblast markers in the polar sub-lineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation (DNA methylation and microRNAs (miRNAs)) likely underlie the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.

+view abstract Genome research, PMID: 35948369

Barneda D, Stephens L, Hawkins P Signalling

Li et鈥塧l present the results of a proximity-interaction screen in mammalian cells for the effector proteins of 25 members of the Arf family of small GTPases. This study has generated an important resource for those working in several areas of cell biology and provided an initial characterisation of two new cellular roles for some of the least well studied members of this family, the regulation of PLD1 by ARL11/14 in phagocytosis, and the regulation of PI4KB by ARL5A/5B in the Golgi.

+view abstract The EMBO journal, PMID: 35929178

Open Access
Richard AC Immunology

The advent of technologies that can characterize the phenotypes, functions and fates of individual cells has revealed extensive and often unexpected levels of diversity between cells that are nominally of the same subset. CD8 T cells, also known as cytotoxic T lymphocytes (CTLs), are no exception. Investigations of individual CD8 T cells both and have highlighted the heterogeneity of cellular responses at the levels of activation, differentiation and function. This review takes a broad perspective on the topic of heterogeneity, outlining different forms of variation that arise during a CD8 T cell response. Specific attention is paid to the impact of T cell receptor (TCR) stimulation strength on heterogeneity. In particular, this review endeavors to highlight connections between variation at different cellular stages, presenting known mechanisms and key open questions about how variation between cells can arise and propagate.

+view abstract Frontiers in immunology, PMID: 35911755

Open Access
Cook SJ, Lochhead PA Signalling

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is frequently de-regulated in human cancer. Melanoma in particular exhibits a high incidence of activating BRAF and NRAS mutations and such cells are addicted to the activity of these mutant oncoproteins. As a result three different BRAF inhibitors (BRAFi) have now been approved for BRAFV600E/K- mutant melanoma and have transformed the treatment of this disease. Despite this, clinical responses are typically transient as tumour cells develop resistance. These resistance mechanisms frequently involve reinstatement of ERK1/2 signalling and BRAFi are now deployed in combination with one of three approved MEK1/2 inhibitors (MEKi) to provide more durable, but still transient, clinical responses. Furthermore, inhibitors to ERK1/2 (ERK1/2i) have also been developed to counteract ERK1/2 signalling. However, recent studies have suggested that BRAFi/MEKi and ERK1/2i resistance can arise through activation of a parallel signalling pathway leading to activation of ERK5, an unusual protein kinase that contains both a kinase domain and a transcriptional transactivation domain. Here we review the evidence supporting ERK5 as a mediator of BRAFi/MEKi and ERK1/2i resistance. We also review the challenges in targeting ERK5 signalling with small molecules, including paradoxical activation of the transcriptional transactivation domain, and discuss new therapeutic modalities that could be employed to target ERK5.

+view abstract Frontiers in cell and developmental biology, PMID: 35903549

Droubi A, Wallis C, Anderson KE, Rahman S, de Sa A, Rahman T, Stephens LR, Hawkins PT, Lowe M Signalling

Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.

+view abstract The Journal of cell biology, PMID: 35878408

Open Access
El Ansari YS, Kanagaratham C, Burton OT, Santos JV, Hollister BA, Lewis OL, Renz H, Oettgen HC Immunology

Mast cells and basophils have long been implicated in the pathogenesis of IgE-mediated hypersensitivity reactions. They express the high-affinity IgE receptor, Fc系RI, on their surface. Antigen-induced crosslinking of IgE antibodies bound to that receptor triggers a signaling cascade that results in activation, leading to the release of an array of preformed vasoactive mediators and rapidly synthesized lipids, as well as the production of inflammatory cytokines. In addition to bearing activating receptors like Fc蔚RI, these effector cells of allergy express inhibitory ones including Fc纬R2b, an IgG Fc receptor with a cytosolic inhibitory motif that activates protein tyrosine phosphatases that suppress IgE-mediated activation. We and others have shown that food allergen-specific IgG antibodies strongly induced during the course of oral immunotherapy (OIT), signal Fc纬R2b to suppress IgE-mediated mast cell and basophil activation triggered by food allergen challenge. However, the potential inhibitory effects of IgA antibodies, which are also produced in response to OIT and are present at high levels at mucosal sites, including the intestine where food allergens are encountered, have not been well studied. Here we uncover an inhibitory function for IgA. We observe that IgA binds mouse bone marrow-derived mast cells (BMMCs) and peritoneal mast cells. Binding to BMMCs is dependent on calcium and sialic acid. We also found that IgA antibodies inhibit IgE-mediated mast cell degranulation in an allergen-specific fashion. Antigen-specific IgA inhibits IgE-mediated mast cell activation early in the signaling cascade, suppressing the phosphorylation of Syk, the proximal protein kinase mediating Fc蔚RI signaling, and suppresses mast cell production of cytokines. Furthermore, using basophils from a peanut allergic donor we found that IgA binds to basophils and that activation by exposure to peanuts is effectively suppressed by IgA. We conclude that IgA serves as a regulator of mast cell and basophil degranulation, suggesting a physiologic role for IgA in the maintenance of immune homeostasis at mucosal sites.

+view abstract Frontiers in immunology, PMID: 35865546

Open Access
Krokowski D, Jobava R, Szkop KJ, Chen CW, Fu X, Venus S, Guan BJ, Wu J, Gao Z, Banaszuk W, Tchorzewski M, Mu T, Ropelewski P, Merrick WC, Mao Y, Sevval AI, Miranda H, Qian SB, Manifava M, Ktistakis NT, Vourekas A, Jankowsky E, Topisirovic I, Larsson O, Hatzoglou M Signalling

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.

+view abstract Cell reports, PMID: 35858571

Open Access
Nunes C, Depestel L, Mus L, Keller KM, Delhaye L, Louwagie A, Rishfi M, Whale A, Kara N, Andrews SR, Dela Cruz F, You D, Siddiquee A, Cologna CT, De Craemer S, Dolman E, Bartenhagen C, De Vloed F, Sanders E, Eggermont A, Bekaert SL, Van Loocke W, Bek JW, Dewyn G, Loontiens S, Van Isterdael G, Decaesteker B, Tilleman L, Van Nieuwerburgh F, Vermeirssen V, Van Neste C, Ghesquiere B, Goossens S, Eyckerman S, De Preter K, Fischer M, Houseley J, Molenaar J, De Wilde B, Roberts SS, Durinck K, Speleman F Epigenetics,Bioinformatics

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.

+view abstract Science advances, PMID: 35857500

Open Access
Johnston HE, Yadav K, Kirkpatrick JM, Biggs GS, Oxley D, Kramer HB, Samant RS Signalling,Mass Spectrometry

Complete, reproducible extraction of protein material is essential for comprehensive and unbiased proteome analyses. A current gold standard is single-pot, solid-phase-enhanced sample preparation (SP3), in which organic solvent and magnetic beads are used to denature and capture protein aggregates, with subsequent washes removing contaminants. However, SP3 is dependent on effective protein immobilization onto beads, risks losses during wash steps, and exhibits losses and greater costs at higher protein inputs. Here, we propose solvent precipitation SP3 (SP4) as an alternative to SP3 protein cleanup, capturing acetonitrile-induced protein aggregates by brief centrifugation rather than magnetism鈹with optional low-cost inert glass beads to simplify handling. SP4 recovered equivalent or greater protein yields for 1-5000 渭g preparations and improved reproducibility (median protein 0.99 (SP4) 0.97 (SP3)). Deep proteome profiling revealed that SP4 yielded a greater recovery of low-solubility and transmembrane proteins than SP3, benefits to aggregating protein using 80 50% organic solvent, and equivalent recovery by SP4 and S-Trap. SP4 was verified in three other labs across eight sample types and five lysis buffers鈹all confirming equivalent or improved proteome characterization SP3. With near-identical recovery, this work further illustrates protein precipitation as the primary mechanism of SP3 protein cleanup and identifies that magnetic capture risks losses, especially at higher protein concentrations and among more hydrophobic proteins. SP4 offers a minimalistic approach to protein cleanup that provides cost-effective input scalability, the option to omit beads entirely, and suggests important considerations for SP3 applications鈹all while retaining the speed and compatibility of SP3.

+view abstract Analytical chemistry, PMID: 35848328

Open Access
Staels F, Lorenzetti F, De Keukeleere K, Willemsen M, Gerbaux M, Neumann J, Tousseyn T, Pasciuto E, De Munter P, Bossuyt X, Gijsbers R, Liston A, Humblet-Baron S, Schrijvers R Immunology

Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-纬 immunity. The most frequent genetic defects are found in IL12 or a subunit of its receptor. IL23R deficiency in MSMD has only been reported once, in two pediatric patients from the same kindred with isolated disseminated Bacille Calmette-Gu茅rin disease. We evaluated the impact of a homozygous stop mutation in IL23R (R381X), identified by whole exome sequencing, in an adult patient with disseminated non-tuberculous mycobacterial disease.

+view abstract Journal of clinical immunology, PMID: 35829840

Yu D, Walker LSK, Liu Z, Linterman MA, Li Z Immunology

The identification of CD4 T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (T) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. T cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive T cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. T cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.

+view abstract Nature immunology, PMID: 35817844

Open Access
Mau KHT, Karimlou D, Barneda D, Brochard V, Royer C, Leeke B, de Souza RA, Pailles M, Percharde M, Srinivas S, Jouneau A, Christian M, Azuara V Signalling

Mammalian pre-implantation embryos accumulate substantial lipids, which are stored in lipid droplets (LDs). Despite the fundamental roles of lipids in many cellular functions, the significance of building-up LDs for the developing embryo remains unclear. Here we report that the accumulation and mobilization of LDs upon implantation are causal in the morphogenesis of the pluripotent epiblast and generation of the pro-amniotic cavity in mouse embryos, a critical step for all subsequent development. We show that the CIDEA protein, found abundantly in adipocytes, enhances lipid storage in blastocysts and pluripotent stem cells by promoting LD enlargement through fusion. The LD-stored lipids are mobilized into lysosomes at the onset of lumenogenesis, but without CIDEA are prematurely degraded by cytosolic lipases. Loss of lipid storage or inactivation of lipophagy leads to the aberrant formation of multiple cavities within disorganised epithelial structures. Thus, our study reveals an unexpected role for LDs in orchestrating tissue remodelling and uncovers underappreciated facets of lipid metabolism in peri-implantation development.

+view abstract Nature communications, PMID: 35790717

Barneda D, Janardan V, Niewczas I, Collins DM, Cosulich S, Clark J, Stephens LR, Hawkins PT Signalling,Biological Chemistry

Phosphoinositides (PIPn) in mammalian tissues are enriched in the stearoyl/arachidonoyl acyl chain species ("C38:4"), but its functional significance is unclear. We have used metabolic tracers (isotopologues of inositol, glucose and water) to study PIPn synthesis in cell lines in which this enrichment is preserved to differing relative extents. We show that PIs synthesised from glucose are initially enriched in shorter/more saturated acyl chains, but then rapidly remodelled towards the C38:4 species. PIs are also synthesised by a distinct 're-cycling pathway', which utilises existing precursors and exhibits substantial selectivity for the synthesis of C38:4-PA and -PI. This re-cycling pathway is rapidly stimulated during receptor activation of phospholipase-C, both allowing the retention of the C38:4 backbone and the close coupling of PIPn consumption to its resynthesis, thus maintaining pool sizes. These results suggest that one property of the specific acyl chain composition of PIPn is that of a molecular code, to facilitate 'metabolic channelling' from PIP2 to PI via pools of intermediates (DG, PA and CDP-DG) common to other lipid metabolic pathways.

+view abstract The EMBO journal, PMID: 35771169

Menon G, Howard M Epigenetics

The maintenance of transcriptional states regulated by histone modifications and controlled switching between these states are fundamental concepts in our understanding of nucleosome-mediated epigenetic memory. Any approach relying on genome-wide bioinformatic analyses alone offers limited scope for dissecting the molecular mechanisms involved in maintenance and switching. Mechanistic mathematical models-describing the dynamics of histone modifications at individual genomic loci-offer an alternative way to investigate these mechanisms. These models, in conjunction with quantitative experimental data-ChIP data, quantification of mRNA levels, and single-cell fluorescence tracking in clonal lineages-can generate predictions that drive more targeted experiments, allowing us to understand mechanisms that would be challenging to unravel by a purely experimental approach. In this chapter, we describe a generic stochastic modeling framework that can be used to capture histone modification dynamics and associated molecular processes-including transcription and read-write feedback by chromatin modifying complexes-at individual genomic loci. Using a specific example-transcriptional silencing by Polycomb-mediated H3K27 methylation-we demonstrate how to construct and simulate a stochastic histone modification model. We provide a step-by-step guide to programming simulations for such a model and discuss how to analyze the simulation output.

+view abstract Methods in molecular biology, PMID: 35733026

Idigo NJ, Voigt P Epigenetics

Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues in histone as well as nonhistone substrates. In vitro histone methyltransferase assays have been instrumental in identifying HMTs, and they continue to be invaluable tools for the study of these important enzymes, revealing novel substrates and modes of regulation.Here we describe a universal protocol to examine HMT activity in vitro that can be adapted to a range of HMTs, substrates, and experimental objectives. We provide protocols for the detection of activity based on incorporation of H-labeled methyl groups from S-adenosylmethionine (SAM), methylation-specific antibodies, and quantification of the reaction product S-adenosylhomocysteine (SAH).

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 35733009

Open Access
Novo CL, Wong EV, Hockings C, Poudel C, Sheekey E, Wiese M, Okkenhaug H, Boulton SJ, Basu S, Walker S, Kaminski Schierle GS, Narlikar GJ, Rugg-Gunn PJ

Heterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1蓱. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs). Here, we report that MSR transcripts can drive the formation of HP1蓱 droplets in vitro, and modulate heterochromatin into dynamic condensates in ESCs, contributing to the formation of large nuclear domains that are characteristic of pluripotent cells. Depleting MSR transcripts causes heterochromatin to transition into a more compact and static state. Unexpectedly, changing heterochromatin's biophysical properties has severe consequences for ESCs, including chromosome instability and mitotic defects. These findings uncover an essential role for MSR transcripts in modulating the organisation and properties of heterochromatin to preserve genome stability. They also provide insights into the processes that could regulate phase separation and the functional consequences of disrupting the properties of heterochromatin condensates.

+view abstract Nature communications, PMID: 35725842

Bergmann S, Penfold CA, Slatery E, Siriwardena D, Drummer C, Clark S, Strawbridge SE, Kishimoto K, Vickers A, Tewary M, Kohler TN, Hollfelder F, Reik W, Sasaki E, Behr R, Boroviak TE Epigenetics

Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development and to advance stem-cell-based regenerative approaches. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX, LEFTY2, LHX1) and primate-specific (POSTN, SDC4, FZD5) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1, ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells聽(PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.

+view abstract Nature, PMID: 35709828

Open Access
Christophorou MA Epigenetics

The post-translational modification of proteins expands the regulatory scope of the proteome far beyond what is achievable through genome regulation. The field of protein citrullination has seen significant progress in the last two decades. The small family of peptidylarginine deiminase (PADI or PAD) enzymes, which catalyse citrullination, have been implicated in virtually all facets of molecular and cell biology, from gene transcription and epigenetics to cell signalling and metabolism. We have learned about their association with a remarkable array of disease states and we are beginning to understand how they mediate normal physiological functions. However, while the biochemistry of PADI activation has been worked out in exquisite detail , we still lack a clear mechanistic understanding of the processes that regulate PADIs within cells, under physiological and pathophysiological conditions. This review summarizes and discusses the current knowledge, highlights some of the unanswered questions of immediate importance and gives a perspective on the outlook of the citrullination field.

+view abstract Royal Society open science, PMID: 35706669

Abakir A, Alenezi F, Ruzov A Epigenetics

N6-methyladenosine (mA) is an RNA modification essential for posttranscriptional regulation of gene expression in eukaryotes. We recently demonstrated that mA decorates the RNA components of R-loops, specific nucleic acid structures consisting of an RNA/DNA hybrid and a single strand of non-template DNA, that represent a major source of genetic instability and, at the same time, contribute to regulation of gene expression in mammalian cells. According to growing body of experimental evidence, adenosine methylation affects stability of these structures and potentially influences various aspects of their metabolism. Here, we present two methods for detection and analysis of mA-containing RNA/DNA hybrids: an immunostaining protocol allowing investigation of their spatial distribution in eukaryotic cells and mA-DNA immunoprecipitation (DIP), an antibody-based technique that permits their genome mapping and locus-specific analysis. In addition to the mA-focused studies, these methodologies can also contribute to elucidating the functional roles of other RNA modifications in R-loop biology.

+view abstract Methods in molecular biology, PMID: 35704202

Starczak M, Abakir A, Ruzov A, Gackowski D Epigenetics

R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and an unpaired strand of nontemplate DNA that represent a major source of genomic instability and are involved in regulation of several important biological processes in eukaryotic cells. A growing body of experimental evidence suggests that RNA moieties of RNA-DNA hybrids may convey RNA modifications influencing various aspects of R-loop biology. Here we present a protocol for quantitative analysis of RNA modifications on RNA-DNA hybrids using stable-isotope dilution ultraperformance liquid chromatography coupled with tandem mass spectrometry (SID-UPLC-MS/MS). Supplemented by other techniques, this method can be instrumental in deciphering the roles of RNA modifications in R-loop metabolism.

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 35704189

Open Access
Whyte CE, Singh K, Burton OT, Aloulou M, Kouser L, Veiga RV, Dashwood A, Okkenhaug H, Benadda S, Moudra A, Bricard O, Lienart S, Bielefeld P, Roca CP, Naranjo-Galindo FJ, Lombard-Vadnais F, Junius S, Bending D, Hochepied T, Halim TYF, Schlenner S, Lesage S, Dooley J, Liston A Immunology

Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.

+view abstract The Journal of experimental medicine, PMID: 35699942

Open Access
Zijlmans DW, Talon I, Verhelst S, Bendall A, Van Nerum K, Javali A, Malcolm AA, van Knippenberg SSFA, Biggins L, To SK, Janiszewski A, Admiraal D, Knops R, Corthout N, Balaton BP, Georgolopoulos G, Panda A, Bhanu NV, Collier AJ, Fabian C, Allsop RN, Chappell J, Pham TXA, Oberhuemer M, Ertekin C, Vanheer L, Athanasouli P, Lluis F, Deforce D, Jansen JH, Garcia BA, Vermeulen M, Rivron N, Dhaenens M, Marks H, Rugg-Gunn PJ, Pasque V

Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates.

+view abstract Nature cell biology, PMID: 35697783

Liston A, Dooley J, Yshii L Immunology

Regulatory T cells (Tregs) control inflammation and maintain immune homeostasis. The well-characterised circulatory population of CD4Foxp3 Tregs is effective at preventing autoimmunity and constraining the immune response, through direct and indirect restraint of conventional T cell activation. Recent advances in Treg cell biology have identified tissue-resident Tregs, with tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. A population of brain-resident Tregs, characterised as CD69, has recently been identified in the healthy brain of mice and humans, with rapid population expansion observed under a number of neuroinflammatory conditions. During neuroinflammation, brain-resident Tregs have been proposed to control astrogliosis through the production of amphiregulin, polarize microglia into neuroprotective states, and restrain inflammatory responses by releasing IL-10. While protective effects for Tregs have been demonstrated in a number of neuroinflammatory pathologies, a clear demarcation between the role of circulatory and brain-resident Tregs has been difficult to achieve. Here we review the state-of-the-art for brain-resident Treg population, and describe their potential utilization as a therapeutic target across different neuroinflammatory conditions.

+view abstract Immunology letters, PMID: 35697195