Demond H, Hanna CW, Castillo-Fernandez J, Santos F, Papachristou EK, Segonds-Pichon A, Kishore K, Andrews S, D'Santos CS, Kelsey G
Epigenetics,Bioinformatics
EHMT1 (also known as GLP) is a multifunctional protein, best known for its role as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with EHMT2 (also known as G9A). Here, we investigated the role of EHMT1 in the oocyte in comparison to EHMT2 using oocyte-specific conditional knockout mouse models ( cKO, cKO, cDKO), with ablation from the early phase of oocyte growth. Loss of EHMT1 in cKO and cDKO oocytes recapitulated meiotic defects observed in the cKO; however, there was a significant impairment in oocyte maturation and developmental competence in cKO and cDKO oocytes beyond that observed in the cKO. Consequently, loss of EHMT1 in oogenesis results, upon fertilization, in mid-gestation embryonic lethality. To identify H3K9 methylation and other meaningful biological changes in each mutant to explore the molecular functions of EHMT1 and EHMT2, we performed immunofluorescence imaging, multi-omics sequencing, and mass spectrometry (MS)-based proteome analyses in cKO oocytes. Although H3K9me1 was depleted only upon loss of EHMT1, H3K9me2 was decreased, and H3K9me2-enriched domains were eliminated equally upon loss of EHMT1 or EHMT2. Furthermore, there were more significant changes in the transcriptome, DNA methylome, and proteome in cDKO than cKO oocytes, with transcriptional derepression leading to increased protein abundance and local changes in genic DNA methylation in cDKO oocytes. Together, our findings suggest that EHMT1 contributes to local transcriptional repression in the oocyte, partially independent of EHMT2, and is critical for oogenesis and oocyte developmental competence.
+view abstract
Genome research, PMID: 36690445