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Epigenetic information in the mammalian oocyte has the potential to be transmitted to the
next generation and influence gene expression; this occurs naturally in the case of imprinted
genes. Therefore, it is important to understand how epigenetic information is patterned dur-
ing oocyte development and growth. Here, we review the current state of knowledge of
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transcript species [26,55,56]. Transcriptional activity of these LTRs contributes to the generation of hypermethy-
lated domains found downstream (Figure 1B) [26]. A recent study in mouse, rat and human oocytes identified that
approximately one-sixth of all DNA methylation is linked to transcription initiated at LTRs [31]. LTR-dependent
DNA methylation shows strong species specificity, and can be inherited to blastocyst or extraembryonic tissues
[31]. Moreover, LTRs are suggested to be drivers of species-specific imprint establishment in humans and mice
(https://www.biorxiv.org/content/biorxiv/early/2019/08/07/723254.full.pdf).

Local chromatin environment
As noted above, not all sites gain methylation simultaneously during oocyte growth [24,27,29]. The timing of DNA
methylation of specific genes and genomic features is not linked to the underlying sequence but could rather be
assigned to local chromatin environment, histone PTMs and nucleosome density. Although the oocyte is in a
non-replicative state, nucleosome turnover, an inherent process during transcription, is required to aid oocyte mat-
uration. Deletion of HIRA, a histone chaperone responsible for non-canonical histone deposition in quiescent cells
[57], in the oocyte results in increased accessibility and loss of landmark histone modifications, which in turn leads
to genome-wide hypomethylation [58]. At the same time, nucleosome depletion at certain sites increases accessibility
and could allow easier access for DNMTs. Genes showing high accessibility at TSSs or across the gene body during
oocyte development are associated with higher transcription and DNA methylation levels [53]. Genes that remain
highly compacted throughout oocyte growth tend to remain silent and are not subjected to de novo methylation.
Similarly, precocious expression of the de novo methyltransferases DNMT3A and DNMT3L accelerates imprint es-
tablishment at only a selection of loci and others appear to be protected by a restrictive chromatin environment [59].

Loci that acquire methylation late in oocyte growth are often CGI-rich, and require removal of H3K4me2 or
H3K4me3, active chromatin marks that inhibit binding and activity of the DNMT3A/L complex [29,46]. The H3K4
demethylases KDM1A and KDM1B are expressed throughout oocyte growth or from mid-growth phase, respectively.
Ablation of KDM1B, and to some extent KDM1A, in the oocyte resulted in failure to establish full DNA methy-
lation over most imprinted genes and led to focal hypomethylation [46,48,60,61]. Similarly, histone deacetylase 1
and 2 (HDAC1/2) are expressed in early oocytes, with the former subsequently decreasing as growth progresses.
Loss of HDAC1/2 results in altered chromatin environment and perturbed transcription, leading to both global and
imprint-specific DNA methylation loss in the oocyte [62,63]. As noted above, 10% of DNA methylation in the oocyte
is transcription-independent and these loci tend to be methylated quite late in oocyte growth. DNMT targeting to
those sites is likely to involve histone modifications, remodellers or other chromatin-interacting proteins that would
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ADD-catalytic domain interaction, allowing activation of DNMT3A enzymatic function [85]. Thus, DNA methy-
lation and H3K4me3 are mutually exclusive in the genome. Engineering of the ADD domain to lose sensitivity to
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