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number. During the subsequent compensatory growth, somite
differentiation was delayed as somites started to form at E8.
From E10.5 onwards, somitogenesis accelerated resulting in
the correct somite number by E11.5 [25– 27]. Moreover, the for-



6. Limb morphogenesis
Limbs represent one of the best-studied systems in evolution
and development. Although they show a well-defined
sequence of temporal events, such as the proximo-distal
patterning of the limb bud and the chondrification of skeletal
elements, they have undergone extensive evolutionary
diversification in different species [43]. Some of this diversifi-
cation appears to depend on changes in timing [44]. Limbs
develop from the flanks of the trunk into three proximo-
distal main segments in a proximo-distal timely manner.





the base of bud-like structures and mature cell types migrate
to the central structure of the cyst [61]. The speed at which
cells in these organoids differentiate appears to be species-
specific. For example, the generation of specialized goblet
cells in intestinal organoids from stem cells in mouse cells
takes approximately 2 days, whereas human goblet cells
emerge around day 5 [79]. It would be interesting to system-
atically measure the tempo in the differentiation trajectories in
comparable organoid models of mouse and human.

Similar to developmental organoids, these in vitro systems
offer an unprecedented opportunity to investigate cell-auton-
omous and coordinated mechanisms responsible for the
speed of progression. Whether the differences in develop-
mental tempo between species reflects differences in the
homeostatic processes that maintain mature organs in adult
animals remains to be determined. The ability to understand
the pace of progression during homeostasis may in turn

https://genomics.senescence.info/species/
https://genomics.senescence.info/species/


biological processes but is likely to provide the means to
engineer and refine methods to generate specific cell types
for research and therapeutic applications.

Data accessibility. Data for figure 3 are available from AnAge (https://
genomics.senescence.info/species/) and electronic supplementary
material from [83].
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