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Abstract 

Background: Prior work in mice has shown that some retrotransposed elements remain substantially methylated 
during DNA methylation reprogramming of germ cells. In the pig, however, information about this process is scarce. 
The present study was designed to examine the methylation profiles of porcine germ cells during the time course of 
epigenetic reprogramming.

Results: Sows were artificially inseminated, and their fetuses were collected 28, 32, 36, 39, and 42 days later. At each 
time point, genital ridges were dissected from the mesonephros and germ cells were isolated through magnetic‑
activated cell sorting using an anti‑SSEA‑1 antibody, and recovered germ cells were subjected to whole‑genome 
bisulphite sequencing. Methylation levels were quantified using SeqMonk software by performing an unbiased 
analysis, and persistently methylated regions (PMRs) in each sex were determined to extract those regions showing 
50% or more methylation. Most genomic elements underwent a dramatic loss of methylation from day 28 to day 36, 
when the lowest levels were shown. By day 42, there was evidence for the initiation of genomic re‑methylation. We 
identified a total of 1456 and 1122 PMRs in male and female germ cells, respectively, and large numbers of transpos‑
able elements (SINEs, LINEs, and LTRs) were found to be located within these PMRs. Twenty‑one percent of the introns 
located in these PMRs were found to be the first introns of a gene, suggesting their regulatory role in the expression 
of these genes. Interestingly, most of the identified PMRs were demethylated at the blastocyst stage.

Conclusions: Our findings indicate that methylation reprogramming in pig germ cells follows the general dynamics 
shown in mice and human, unveiling genomic elements that behave differently between male and female germ cells.
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Background
Mammalian genomes undergo epigenetic reprogram-
ming, which mostly involves the reprogramming of his-
tone modifications and the erasure and re-establishment 
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be made with caution. Recent studies have also exam-
ined DNA de-methylation during the reprogramming of 
germ cells in humans [5–8]. However, re-methylation in 
human germ cells has not been explored, and differences 
were detected with respect to mouse PGCs including 
their mitotic behaviour during the de-methylated period. 
The pig is a broadly used model for human, as pigs are 
evolutionarily closer to human than mice [9, 10] and both 
species share various physiologic and anatomic charac-
teristics [11]. Some studies have identified key aspects 
of porcine germ cell methylation and development [12, 
13], yet more extensive studies are necessary to fully 
understand the dynamics of epigenetic reprogramming. 
This information will help understand the mechanism of 
reprogramming of gonadal germ cells in mammals.
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window containing a minimum of 20 observations per 
feature, yielding a total of 327,583 tiles. We found that 
on day 28, overall DNA methylation, as evaluated from 
the median methylation of 100-CpG tiles, was 15.38% in 
male germ cells and 15.85% in female germ cells. Given 
that the methylation level in somatic cells of the pig 
fetus on day 28 has been reported at around 75% [25], it 
seems the main wave of DNA demethylation occurred 
in the germ cells before day 28 (Fig.  2a). We observed 
that in both male and female germ cells, median meth-



Page 4 of 13Gómez-Redondo et al. Clin Epigenet           (2021) 13:27 

shown), suggesting that pig gonad germ cells feature only 
marginal DNA methylation levels of non-CpG sites.

Methylation reprogramming of functional genomic 
elements in porcine germ cells
We further analysed the methylation dynamics of dif-
ferent functional genomic features. A general view of 
the methylation profile of these elements is shown in 
Fig. 3a, and their means is represented in Fig. 3b. A pre-
dominantly low level of methylation was observed in all 
the samples, with few tiles having a high methylation 
level (> 50%). Remarkably, the same clear pattern that 
we observed in the averaged methylation of CpG sites 
could be seen when looking at the methylation of func-
tional genomic elements, for which a drop in the meth-
ylation levels from D28 to the lowest levels on D36, 
and then recovering it on D42 was observed. This gen-
eral trend can be seen in all elements analysed in both 
sexes, although the demethylation trough was more 
pronounced in male germ cells. This could indicate dif-
ferences in the start of re-methylation between male and 
female germ cells, again being cautions due to the low 
sample size of D28 and D42. In the case of CGI-contain-
ing promoters, the demethylation at D36 was even more 
marked: methylation fell to 8.54% in the case of males 
and 10.04% in females, whereas in promoters not located 
within a CGI the reduction of methylation was attenu-
ated (Fig.  3
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spindle organization, chromosome alignment, and cell 
cycle progression in mouse oocytes [40] (Additional 
file 4B, left panel).

Methylome dynamics of major transposable elements 
in porcine germ cells
Transposable elements comprise about half of the 
genome in mammals, and over 80% of pig protein-coding 
and lncRNA genes overlap with retrotransposon inser-
tions [41]; thus, their regulation in terms of DNA meth-
ylation reprogramming is important to understand. We 
examined methylation patterns of the three major types 
of transposable elements: SINEs, LINEs, and LTRs. A 
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methylation reprogramming has been described as 
the main impediment to intergenerational epige-
netic inheritance [47]. We identified genomic features 
located within those regions, which accordingly were 
able to avoid methylation erasure, as being potentially 
involved in this process, as described in mouse and 
human germ cells [6, 7, 22, 48]. To our knowledge, this 
is the first description of genome regions resistant to 
methylation erasure in the pig, and we believe it to be 
a good starting point for the investigation of the poten-
tial for epigenetic inheritance in livestock species. We 
identified 1,456 and 1,122 regions remaining persis-
tently methylated (methylation at least 50%) in male 
and female germ cells, respectively, of which the major-
ity were sex-specific. However, fewer than 3% of the 
PMRs also remain highly methylated in pig blastocysts, 
indicating that their methylation is erased during epi-
genetic reprogramming in the preimplantation embryo, 
thus making them unlikely mediators of intergenera-
tional epigenetic inheritance.

Remarkably, a significant percentage of introns found 
to escape de-methylation were the first introns of a gene 
(~ 21%). Indeed, these elements have special functional 
roles, such as regulating the correct cytoplasmic locali-
sation of some mRNAs [49], and inverse correlation has 
been described between DNA methylation of the first 
intron and gene expression across tissues [50]. Persis-
tently methylated transposable elements (SINEs, LINEs, 
and LTRsb 
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was incubated for 3  min at 37ºC. TrypLE Express was 
then blocked with 3 ml of fetal calf serum (FCS) and the 
solution filtered through a cell strainer (40 µm) and cen-
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containing at least 6 CpG sites in each stage (D28, D32, 
D36, D39, and D42), and selected those regions show-
ing a methylation value of 50% or above in all samples, 
yielding a total of 1,456 PMRs in the male germ cells 
and 1,122 PMRs in the female germ cells.

Supplementary Information
The online version contains supplementary material available at https ://doi.
org/10.1186/s1314 8‑021‑01003 ‑x.

Additional �le 1: Summary of sequencing statistics of each sample. 

Additional �le 2: Mean methylation levels of genomic elements.

Additional �le 3: General view of the imprinted gene RASGRF1, demeth‑
ylation resistant in germ cells. Blue and red dots represent methylation 
reads. The lower panel shows the methylation levels detected in the 
differentially methylated region (DMR) in all samples analysed.

Additional �le 4: (A) X‑chromosome methylome dynamics. The left panel 
shows a heatmap representing levels of methylation of X chromosome 
promoters, each line corresponding to a single feature. High methylation 
levels are represented in red, and low methylation levels are shown in 
blue. To the right, line graph representing the mean level of methylation 
of the X‑chromosome promoters on each sex and day. (B) Methylation 
dynamics of 70 meiosis‑related genes. The left panel shows a heatmap 
representing levels of methylation of genes involved in meiosis, each line 
corresponding to a single feature. High methylation levels are represented 
in red, and low methylation levels are shown in blue. Clusters showing 
different patterns of methylation between male and female are zoomed 
in. To the right, line graph representing the mean level of methylation of 
the meiosis‑related genes analysed on each sex and day.

Additional �le 5: Genomic elements reported for male PMRs includ‑
ing their levels of methylation in each sample and their overlap with 
blastocyst and oocyte‑sperm PMRs. The following tabs are included: (A) 
Promoters, (B) CGIs, (C) Exons, (D) Introns, (E) SINEs, (F) LINEs, (G) LTRs, and 
(H) Genes. Tab (D) includes information about intron position, tabs (E), (F), 
and (G) include the element subtype, and tab (H) includes the possible 
coincidence of a feature in female PMRs.

Additional �le 6: Genomic elements included in female PMRs, including 
their levels of methylation in each sample and their overlap with blasto‑
cyst and oocyte‑sperm PMRs. The following tabs are included: (A) Promot‑
ers, (B) CGIs, (C) Exons, (D) Introns, (E) SINEs, (F) LINEs, (G) LTRs, and (H) 
Genes. Tab (D) includes information about the position of the intron, tabs 
(E), (F), and (G) include the subtype of the element, and tab (H) includes 
the possible coincidence of a feature in male PMRs.

Additional �le 7: Summary of the elements included in common PMRs 
between germ cells (male and female separately) and blastocyst (data 
from [26]) and sperm‑oocyte (data from [27]).

Additional �le 8: Summary of the genes identified as persistently methyl‑
ated in male and female germ cells differentially expressed in mice and 
bovine embryos during sex determination or coding for different isoforms 
depending on the sex.
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