海角社区论坛

 

Filter

Publications

The 海角社区论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
J Huang, CL Birmingham, S Shahnazari, J Shiu, YT Zheng, AC Smith, KG Campellone, WD Heo, S Gruenheid, T Meyer, MD Welch, NT Ktistakis, PK Kim, DJ Klionsky, JH Brumell Signalling

Autophagy mediates the degradation of cytoplasmic components in eukaryotic cells and plays a key role in immunity. The mechanism of autophagosome formation is not clear. Here we examined two potential membrane sources for antibacterial autophagy: the ER and mitochondria. DFCP1, a marker of specialized ER domains known as 'omegasomes,' associated with Salmonella-containing autophagosomes via its PtdIns(3)P and ER-binding domains, while a mitochondrial marker (cytochrome b5-GFP) did not. Rab1 also localized to autophagosomes, and its activity was required for autophagosome formation, clearance of protein aggregates and peroxisomes, and autophagy of Salmonella. Overexpression of Rab1 enhanced antibacterial autophagy. The role of Rab1 in antibacterial autophagy was independent of its role in ER-to-Golgi transport. Our data suggest that antibacterial autophagy occurs at omegasomes and reveal that the Rab1 GTPase plays a crucial role in mammalian autophagy.

+view abstract Autophagy, PMID: 20980813 2011

Open Access
L Gambardella, M Hemberger, B Hughes, E Zudaire, S Andrews, S Vermeren Epigenetics,Bioinformatics

One function of phosphoinositide 3-kinase 脦卤 (PI3K脦卤), which generates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)], is its regulation of angiogenesis in the developing embryo and in pathological situations. ARAP3 is a PtdIns(3,4,5)P(3)- and Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) for the small GTPases RhoA and Arf6. Here, we show that deleting Arap3 in the mouse caused embryonic death in mid-gestation due to an endothelial cell-autonomous defect in sprouting angiogenesis. Explants taken at a developmental stage at which no defect was yet present reproduced this phenotype ex vivo, demonstrating that the defect was not secondary to hypoxia, placental defects, or organ failure. In addition, knock-in mice expressing an ARAP3 point mutant that cannot be activated by PtdIns(3,4,5)P(3) had angiogenesis defects similar to those of Arap3(-/-) embryos. Our work delineates a previously unknown signaling pathway that controls angiogenesis immediately downstream of PI3K脦卤 through ARAP3 to the Rho and Arf family of small GTPases.

+view abstract Science signaling, PMID: 20978237 2010

Open Access
L Ma, C Mauro, GH Cornish, JG Chai, D Coe, H Fu, D Patton, K Okkenhaug, G Franzoso, J Dyson, S Nourshargh, FM Marelli-Berg Immunology

CD31 is an Ig-like molecule expressed by leukocytes and endothelial cells with an established role in the regulation of leukocyte trafficking. Despite genetic deletion of CD31 being associated with exacerbation of T cell-mediated autoimmunity, the contribution of this molecule to T-cell responses is largely unknown. Here we report that tumor and allograft rejection are significantly enhanced in CD31-deficient mice, which are also resistant to tolerance induction. We propose that these effects are dependent on an as yet unrecognized role for CD31-mediated homophilic interactions between T cells and antigen-presenting cells (APCs) during priming. We show that loss of CD31 interactions leads to enhanced primary clonal expansion, increased killing capacity, and diminished regulatory functions by T cells. Immunomodulation by CD31 signals correlates with a partial inhibition of proximal T-cell receptor (TCR) signaling, specifically Zap-70 phosphorylation. However, CD31-deficient mice do not develop autoimmunity due to increased T-cell death following activation, and we show that CD31 triggering induces Erk-mediated prosurvival activity in T cells either in conjunction with TCR signaling or autonomously. We conclude that CD31 functions as a nonredundant comodulator of T-cell responses, which specializes in sizing the ensuing immune response by setting the threshold for T-cell activation and tolerance, while preventing memory T-cell death.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 20978210 2010

S Balakrishnan, C Jackson, N Russell, TC Bellamy

Classical synaptic transmission occurs at active zones within the synaptic cleft, but increasing evidence suggests that vesicle fusion can also occur outside of these zones, releasing transmitter directly into the extrasynaptic space. The role of such "ectopic" release is unclear, but in the cerebellar molecular layer it is thought to guide the processes of Bergmann glia toward synaptic terminals through activation of glial 脦卤-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptors. Once surrounding the terminal, the glial process is presumed to limit spillover of neurotransmitter between synapses by rapid uptake of glutamate. We have previously reported that this route for neuron-glial transmission exhibits long-term depression following repetitive stimulation at frequencies in the 0.1-1 Hz range, in ex vivo slices from rat cerebellum. Here, we present evidence that LTD arises because ectopic sites lack the fast recycling mechanisms that operate at the active zone. Consequently, ectopic vesicles constitute an exhaustible pool that is depleted at normal synaptic firing rates and only recovers slowly. This effect is cumulative, meaning that the strength of ectopic transmission provides a read-out of the average frequency of presynaptic firing over several minutes. Glial processes are therefore likely to interact most closely with terminals that fire infrequently; conditions that may promote elimination of, rather than support for, the connection.

+view abstract Glia, PMID: 20967883 2011

ML Gazarini, FH Beraldo, FM Almeida, M Bootman, AM Da Silva, CR Garcia

Calcium (Ca(2+) ) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra-erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca(2+) . Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca(2+) and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P.脗聽chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca(2+) within the parasite, because buffering Ca(2+) changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca(2+) signals within the parasite, as did the application of a membrane-permeant analogue of cAMP. Our data suggest that P.脗聽chabaudi engages both Ca(2+) and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca(2+) evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.

+view abstract Journal of pineal research, PMID: 20964707 2011

Open Access
Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, Seepany H, Gao Z, Day LA, Greenblatt JF, Reinberg D Epigenetics

The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone post-translational modifications. To define the events by which naive pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the full gamut of histone H3.1-containing complexes from human cytoplasmic fractions and identified their associated histone post-translational modifications. Through reconstitution assays, biophysical analyses and live cell manipulations, we describe in detail this series of events, namely the assembly of H3-H4 dimers, the acetylation of histones by the HAT1 holoenzyme and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes.

+view abstract Nature structural & molecular biology, PMID: 20953179

Open Access
S Seisenberger, C Popp, W Reik Epigenetics

The evolutionary success of retrotransposable elements is reflected by their abundance in mammalian genomes. To restrict their further advance, a number of defence mechanisms have been put in place by the host. These seem to be particularly effective in the germ line while somatic lineages might be more permissive to new insertions, as recent work by Kano and colleagues suggests.

+view abstract F1000 biology reports, PMID: 20948789 2010

Open Access
LA Carragher, KR Snell, SM Giblett, VS Aldridge, B Patel, SJ Cook, DJ Winton, R Marais, CA Pritchard Signalling

The majority of human colorectal cancers (CRCs) are initiated by mutations arising in the adenomatous polyposis coli (APC) tumour suppressor gene. However, a new class of non-APC mutated CRCs has been defined that have a serrated histopathology and carry the (V600E)BRAF oncogene. Here we have investigated the pathogenesis of serrated CRCs by expressing (V600E)Braf in the proliferative cells of the mouse gastrointestinal tract. We show that the oncogene drives an initial burst of Mek-dependent proliferation, leading to the formation of hyperplastic crypts. This is associated with 脦虏-catenin nuclear localization by a mechanism involving Mapk/Erk kinase (Mek)-dependent, Akt-independent phosphorylation of Gsk3脦虏. However, hyperplastic crypts remain dormant for prolonged periods due to the induction of crypt senescence accompanied by upregulation of senescence-associated 脦虏-galactosidase and p16(Ink4a). We show that tumour progression is associated with down-regulation of p16(Ink4a) through enhanced CpG methylation of exon 1 and knockout of Cdkn2a confirms this gene is a barrier to tumour progression. Our studies identify (V600E)BRAF as an early genetic driver mutation in serrated CRCs and indicate that, unlike APC-mutated cancers, this subtype arises by the bypassing of a (V600E)Braf driven oncogene-induced senescence programme.

+view abstract EMBO molecular medicine, PMID: 20941790 2010

Open Access
NT Ktistakis, S Andrews, J Long Signalling,Bioinformatics

We have recently proposed that some autophagosomes are formed within omegasomes, membrane sites connected to the endoplasmic reticulum and enriched in phosphatidylinositol 3-phosphate. In order to understand if there is any biological advantage to having such a precursor in autophagosome biogenesis, we generated a simple computer program that simulates omegasome and autophagosome formation under a variety of conditions. We concluded from running this simulation that having a transient precursor permits a bigger dynamic range of the autophagic response and allows a more efficient approach to steady state after autophagy stimulation.

+view abstract Autophagy, PMID: 20935487 2011

Open Access
E Babetto, B Beirowski, L Janeckova, R Brown, J Gilley, D Thomson, RR Ribchester, MP Coleman Signalling

Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.

+view abstract The Journal of neuroscience : the official journal of the Society for Neuroscience, PMID: 20926655 2010

M Veldhoen, JH Duarte Immunology

Triggers involved in the development of an autoimmune disease, and those that are part of determining its level of severity, are a major focus of current investigative efforts. However, factors that increase the risk to disease may not be similar to those that determine its severity or its pace of progression. The aryl hydrocarbon receptor (AhR) has been highlighted as having a potential regulatory role in these processes. Here we describe the recent findings of the possible involvement of AhR in the initiation and inhibition of immune responses.

+view abstract Current opinion in immunology, PMID: 20926270 2010

P Georgiev, H Okkenhaug, A Drews, D Wright, S Lambert, M Flick, V Carta, C Martel, J Oberwinkler, P Raghu Signalling

TRPM channels have emerged as key mediators of diverse physiological functions. However, the ionic permeability relevant to physiological function in vivo remains unclear for most members. We report that the single Drosophila TRPM gene (dTRPM) generates a conductance permeable to divalent cations, especially Zn(2+) and in vivo a loss-of-function mutation in dTRPM disrupts intracellular Zn(2+) homeostasis. TRPM deficiency leads to profound reduction in larval growth resulting from a decrease in cell size and associated defects in mitochondrial structure and function. These phenotypes are cell-autonomous and can be recapitulated in wild-type animals by Zn(2+) depletion. Both the cell size and mitochondrial defect can be rescued by extracellular Zn(2+) supplementation. Thus our results implicate TRPM channels in the regulation of cellular Zn(2+) in vivo. We propose that regulation of Zn(2+) homeostasis through dTRPM channels is required to support molecular processes that mediate class I PI3K-regulated cell growth.

+view abstract Cell metabolism, PMID: 20889130 2010

SE Jenkinson, SA Whawell, BM Swales, EM Corps, PJ Kilshaw, PM Farthing

The integrin 脦卤E(CD103)脦虏7 (脦卤E脦虏7) is expressed by intraepithelial lymphocytes, dendritic cells and regulatory T cells. It plays an important role in the mucosal immune system by retaining lymphocytes within the epithelium and is involved in graft rejection, immunity against tumours and the generation of gut-homing effector cells. In gut and breast, the ligand for 脦卤E脦虏7 is E-cadherin but in human oral mucosa and skin, there is evidence that lymphocytes use an alternative, unknown, ligand. In the present study, the I domain of the human 脦卤E subunit, which contains the E-cadherin-binding site, was locked in a highly active, 'open' and an inactive, 'closed' conformation by the introduction of disulphide bonds and these domains were expressed as IgG Fc fusion proteins. 脦卤E fusion proteins recognize E-cadherin, the only known ligand for 脦卤E脦虏7. This interaction was inhibited by an antibody that blocks the 脦卤E-binding site on E-cadherin and by the omission of Mn(2+) , which is essential for integrin function in vitro. The locked 'open' conformation of 脦卤E adhered to human oral and skin keratinocytes, including the E-cadherin-negative H376 cell line, and this was not inhibited by blocking antibody against the 脦卤E脦虏7-binding site on E-cadherin, providing further evidence for the existence of an alternative ligand for 脦卤E脦虏7 in skin and oral mucosa. The interaction with E-cadherin and the alternative ligand was Mn(2+) dependent and mediated by the metal ion-dependent coordination site (MIDAS) of the locked 'open'脦卤E I domain, independently of the 脦虏7 subunit.

+view abstract Immunology, PMID: 20875079 2011

S Andrews, J Gilley, MP Coleman Signalling,Bioinformatics

Studies of axonal transport are critical, not only to understand its normal regulation, but also to determine the roles of transport impairment in disease. Exciting new resources have recently become available allowing live imaging of axonal transport in physiologically relevant settings, such as mammalian nerves. Thus the effects of disease, ageing and therapies can now be assessed directly in nervous system tissue. However, these imaging studies present new challenges. Manual or semi-automated analysis of the range of transport parameters required for a suitably complete evaluation is very time-consuming and can be subjective due to the complexity of the particle movements in axons in ex vivo explants or in vivo. We have developed Difference Tracker, a program combining two new plugins for the ImageJ image-analysis freeware, to provide fast, fully automated and objective analysis of a number of relevant measures of trafficking of fluorescently labeled particles so that axonal transport in different situations can be easily compared. We confirm that Difference Tracker can accurately track moving particles in highly simplified, artificial simulations. It can also identify and track multiple motile fluorescently labeled mitochondria simultaneously in time-lapse image stacks from live imaging of tibial nerve axons, reporting values for a number of parameters that are comparable to those obtained through manual analysis of the same axons. Difference Tracker therefore represents a useful free resource for the comparative analysis of axonal transport under different conditions, and could potentially be used and developed further in many other studies requiring quantification of particle movements.

+view abstract Journal of neuroscience methods, PMID: 20869987 2010

AE Corcoran

Within the lymphocyte lineages, restriction of immunoglobulin V(D)J recombination to B cells and T cell receptor (TCR) recombination to T cells is governed by a myriad of epigenetic mechanisms that control the chromatin accessibility of these loci to the Rag recombinase machinery in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments, and globally over large chromatin domains in these enormous multigene loci. In this review we will explore the established and emerging roles of three aspects of epigenetic regulation that contribute to large-scale control of the immunoglobulin heavy chain locus in B cells: non-coding RNA transcription, regulatory elements, and nuclear organization. Recent conceptual and technological advances have produced a paradigm shift in our thinking about how these components regulate gene expression in general and V(D)J recombination in particular.

+view abstract Seminars in immunology, PMID: 20863715 2010

Open Access
TA Chessa, KE Anderson, Y Hu, Q Xu, O Rausch, LR Stephens, PT Hawkins Signalling

The neutrophil nicotinamide adenine dinucleotide phosphate-oxidase is a multisubunit enzyme (comprising gp91(phox), p22(phox), p67(phox), p40(phox), p47(phox), and Rac) that plays a vital role in microbial killing. The recent discovery of a chronic granulomatous disease patient who expresses a mutant p40(phox) subunit, together with the development of mouse models of p40(phox) function, indicate phosphatidylinositol 3-phosphate binding to the PX domain of p40(phox) is an important signal for oxidase activation. However, the presence of other conserved residues and domains in p40(phox) suggest further regulatory roles for this protein. To test this, we introduced wild-type and mutated versions of p40(phox) into fully differentiated mouse neutrophils by retroviral transduction of p40(phox)(-/-) bone marrow progenitors and repopulation of the bone marrow compartment in radiation chimaeras. Phosphorylation of p40(phox) on threonine 154, but not serine 315, was required for full oxidase activation in response to formylated bacterial peptide fMLP, serum-opsonized S aureus, and immunoglobulin-opsonized sheep red blood cells. A functional SH3 domain was not required for oxidase activation, and deletion of the entire domain resulted in enhanced oxidase responses. Phosphorylation of threonine 154 in response to S aureus was mediated by protein kinase C脦麓 and was required for full translocation of p47(phox) to phagosomes. These results define an important new element in the physiological activation of the oxidase.

+view abstract Blood, PMID: 20861461 2010

O Stoevesandt, M Vetter, D Kastelic, EA Palmer, M He, MJ Taussig

We have previously described the 'DNA array to protein array' (DAPA) method for microarraying of proteins expressed by cell-free systems in situ on the array surface. In this technique, a DNA array on one slide acts as the template for generating a protein array on a second slide, mediated by a cell free lysate between the two juxtaposed slides. Here we explore the feature of the repeatability of the technology, in which the same DNA array is reused several times, and use the method to generate a microarray of 116 diverse proteins. The capabilities of DAPA technology in comparison with other protein array methods are discussed.

+view abstract New biotechnology, PMID: 20850573 2011

Open Access
Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Reubenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Nov猫re N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD Signalling

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

+view abstract Nature biotechnology, PMID: 20829833 2010

ML Janas, M Turner Immunology

The progressive maturation of T cells is accompanied by their migration through the thymus, with each selection stage occurring in distinct microenvironments. Many specialized receptor-ligand pairs have been defined that drive T cell differentiation, but our understanding of the complex relationship between T cells and the thymic stroma is incomplete. Recent reports have identified a role for the chemokine stromal cell-derived factor 1脦卤 and its receptor CXC chemokine receptor 4 in 脦虏-selection. This review explores these findings in detail.

+view abstract Trends in immunology, PMID: 20829112 2010

Open Access
J Rolf, SE Bell, D Kovesdi, ML Janas, DR Soond, LM Webb, S Santinelli, T Saunders, B Hebeis, N Killeen, K Okkenhaug, M Turner Immunology

The generation of high-affinity Abs is essential for immunity and requires collaboration between B and T cells within germinal centers (GCs). By using novel mouse models with a conditional deletion of the p110脦麓 catalytic subunit of the PI3K pathway, we established that p110脦麓 is required in T cells, but not in B cells, for the GC reaction. We found the formation of T follicular helper (T(FH)) cells to be critically dependent on p110脦麓 in T cells. Furthermore, by deleting phosphatase and tensin homolog deleted on chromosome 10, which opposes p110脦麓 in activated T cells, we found a positive correlation between increased numbers of T(FH) cells and GC B cells. These results are consistent with the hypothesis that T cell help is the limiting factor in the GC reaction. P110脦麓 was not required for the expression of B cell lymphoma 6, the downregulation of CCR7, or T cell entry into primary follicles. Instead, p110脦麓 was the critical catalytic subunit for ICOS downstream signaling and the production of key T(FH) cytokines and effector molecules. Our findings support a model in which the magnitude of the GC reaction is controlled by the activity of the PI3K pathway in T(FH) cells.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 20826752 2010

Open Access
KE Anderson, TA Chessa, K Davidson, RB Henderson, S Walker, T Tolmachova, K Grys, O Rausch, MC Seabra, VL Tybulewicz, LR Stephens, PT Hawkins Signalling

The generation of reactive oxygen species (ROS) by the nicotinamide adenine dinucleotide phosphate oxidase is an important mechanism by which neutrophils kill pathogens. The oxidase is composed of a membrane-bound cytochrome and 4 soluble proteins (p67(phox), p40(phox), p47(phox), and GTP-Rac). These components form an active complex at the correct time and subcellular location through a series of incompletely understood mutual interactions, regulated, in part, by GTP/GDP exchange on Rac, protein phosphorylation, and binding to lipid messengers. We have used a variety of assays to follow the spatiotemporal assembly of the oxidase in genetically engineered primary mouse neutrophils, during phagocytosis of both serum- and immunoglobulin G-opsonized targets. The oxidase assembles directly on serum-Staphylococcus aureus-containing phagosomes within seconds of phagosome formation; this process is only partially dependent (芒藛录 30%) on PtdIns3P binding to p40(phox), but totally dependent on Rac1/2 binding to p67(phox). In contrast, in response to immunoglobulin G-targets, the oxidase first assembles on a tubulovesicular compartment that develops at sites of granule fusion to the base of the emerging phagosome; oxidase assembly and activation is highly dependent on both PtdIns3P-p40(phox) and Rac2-p67(phox) interactions and delivery to the phagosome is regulated by Rab27a. These results define a novel pathway for oxidase assembly downstream of FcR-activation.

+view abstract Blood, PMID: 20813901 2010

Open Access
J Houseley, D Tollervey Epigenetics

Trans-splicing, the in vivo joining of two independently transcribed RNA molecules, is well characterized in lower eukaryotes, but was long thought absent from metazoans. However, recent bioinformatic analyses of EST sequences suggested widespread trans-splicing in mammals. These apparently spliced transcripts generally lacked canonical splice sites, leading us to question their authenticity. Particularly, the native ability of reverse transcriptase enzymes to template switch during transcription could produce apparently trans-spliced sequences.

+view abstract PloS one, PMID: 20805885 2010

M He

Protein expression remains a bottleneck in the production of proteins. Owing to several advantages, cell-free translation is emerging as an alternative to cell-based methods for the generation of proteins. Recent advances have led to many novel applications of cell-free systems in biotechnology, proteomics and fundamental biological research. This special issue of New Biotechnology describes recent advances in cell-free protein expression systems and their applications.

+view abstract New biotechnology, PMID: 20804874 2011

G Kelsey Epigenetics

The GNAS locus on chromosome 20q13.11 is the archetypal complex imprinted locus. It comprises a bewildering array of alternative transcripts determined by differentially imprinted promoters which encode distinct proteins. It also provides the classic example of tissue-specific imprinted gene expression, in which the canonical GNAS transcript coding for Gsalpha is expressed predominantly from the maternal allele in a set of seemingly unrelated tissues. Functionally, this rather obscure imprinting is nevertheless of considerable clinical significance, as it dictates the nature of the disease caused by inactivating mutations in Gsalpha, with end organ hormone resistance specifically on maternal transmission (pseudohypoparathyroidism type 1a, PHP1a). In addition, there is a bona fide imprinting disorder, PHP1b, which is caused specifically by DNA methylation defects in the differentially methylated regions (DMRs) that determine tissue-specific monoallelic expression of GNAS. Although the genetic defect in PHP1a and the disrupted imprinting in PHP1b both essentially result in profound reduction of Gsalpha activity in tissues with monoallelic GNAS expression, and despite a growing awareness of the overlap in these two conditions, there are important pathophysiological differences between the two whose basis is not fully understood. PHP1b is one of the only imprinted gene syndromes in which cis-acting mutations have been discovered that disrupt methylation of germline-derived imprint marks; such imprinting mutations in GNAS are helping to provide important new insights into the mechanisms of imprinting establishment generally.

+view abstract American journal of medical genetics. Part C, Seminars in medical genetics, PMID: 20803660 2010