海角社区论坛

 

Filter

Publications

The 海角社区论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
E Banham-Hall, MR Clatworthy, K Okkenhaug Immunology

The class 1 PI3Ks are lipid kinases with key roles in cell surface receptor-triggered signal transduction pathways. Two isoforms of the catalytic subunits, p110脦鲁 and p110脦麓, are enriched in leucocytes in which they promote activation, cellular growth, proliferation, differentiation and survival through the generation of the second messenger PIP3. Genetic inactivation or pharmaceutical inhibition of these PI3K isoforms in mice result in impaired immune responses and reduced susceptibility to autoimmune and inflammatory conditions. We review the PI3K signal transduction pathways and the effects of inhibition of p110脦鲁 and/or p110脦麓 on innate and adaptive immunity. Focusing on rheumatoid arthritis and systemic lupus erythematosus we discuss the preclinical evidence and prospects for small molecule inhibitors of p110脦鲁 and/or p110脦麓 in autoimmune disease.

+view abstract The open rheumatology journal, PMID: 23028409 2012

Open Access
M Durand-Dubief, WR Will, E Petrini, D Theodorou, RR Harris, MR Crawford, K Paszkiewicz, F Krueger, RM Correra, AT Vetter, JR Miller, NA Kent, P Varga-Weisz

Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.

+view abstract PLoS genetics, PMID: 23028372 2012

Open Access
A Roller, A Perino, P Dapavo, E Soro, K Okkenhaug, E Hirsch, H Ji

Psoriasis is a chronic inflammatory skin disease triggered by interplay between immune mediators from both innate and adaptive immune systems and skin tissue, in which the IL-23/IL-17 axis is critical. PI3K脦麓 and PI3K脦鲁 play important roles in various immune cell functions. We found that mice lacking functional PI3K脦麓 or PI3K脦鲁 are largely protected from imiquimod (IMQ)-induced psoriasis-like dermatitis, correlating with reduced IL-17 levels in the lesions, serum, and the draining lymph nodes. TCR脦鲁脦麓 T cells were the major IL-17-producing population in the draining lymph nodes and were significantly diminished in IMQ-treated PI3K脦麓 knockin and PI3K脦鲁 knockout mice. We also show that PI3K脦麓 and PI3K脦鲁 inhibitors reduced IFN-脦鲁 production by human TCR脦鲁脦麓 T cells and IL-17 and IFN-脦鲁 production by PBMCs from psoriatic or healthy donors. In addition, inhibition of PI3K脦鲁, but not PI3K脦麓, blocked chemotaxis of CCR6(+)IL-17-producing cells from IMQ-treated mice or healthy human donors. Taken together, these data indicate that PI3K脦麓 and/or PI3K脦鲁 inhibitors should be considered for treating IL-17-driven diseases, such as psoriasis.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 23024273 2012

Open Access
Voigt P, LeRoy G, Drury WJ, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D Epigenetics

Mononucleosomes, the basic building blocks of chromatin, contain two copies of each core histone. The associated posttranslational modifications regulate essential chromatin-dependent processes, yet whether each histone copy is identically modified in vivo is unclear. We demonstrate that nucleosomes in embryonic stem cells, fibroblasts, and cancer cells exist in both symmetrically and asymmetrically modified populations for histone H3 lysine 27 di/trimethylation (H3K27me2/3) and H4K20me1. Further, we obtained direct physical evidence for bivalent nucleosomes carrying H3K4me3 or H3K36me3 along with H3K27me3, albeit on opposite H3 tails. Bivalency at target genes was resolved upon differentiation of ES cells. Polycomb repressive complex 2-mediated methylation of H3K27 was inhibited when nucleosomes contain symmetrically, but not asymmetrically, placed H3K4me3 or H3K36me3. These findings uncover a potential mechanism for the incorporation of bivalent features into nucleosomes and demonstrate how asymmetry might set the stage to diversify functional nucleosome states.

+view abstract Cell, PMID: 23021224

M Veldhoen, V Brucklacher-Waldert

The function of the gastrointestinal tract relies on a monolayer of epithelial cells, which are essential for the uptake of nutrients. The fragile lining requires protection against insults by a diverse array of antigens. This is accomplished by the mucosa-associated lymphoid tissues of the gastrointestinal tract, which constitute a highly organized immune organ. In this Review, we discuss several recent findings that provide a compelling link between dietary compounds and the organization and maintenance of immune tissues and lymphocytes in the intestine. We highlight some of the molecular players involved, in particular ligand-activated nuclear receptors in lymphoid cells.

+view abstract Nature reviews. Immunology, PMID: 23007570 2012

Open Access
Zhukova A, Adams R, Laibe C, Le Nov猫re N Signalling

The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of Systems Biology models, their characteristics, parameters and inter-relationships. KiSAO enables the unambiguous identification of algorithms from simulation descriptions. Information about analogous methods having similar characteristics and about algorithm parameters incorporated into KiSAO is desirable for simulation tools. To retrieve this information programmatically an application programming interface (API) for KiSAO is needed.

+view abstract BMC research notes, PMID: 23006857 2012

Open Access
Romagnoli P, Dooley J, Enault G, Vicente R, Malissen B, Liston A, van Meerwijk JP Immunology

Thymus-derived CD4(+)Foxp3(+) regulatory T lymphocytes (Tregs) play a central role in the suppression of immune responses to self-antigens and thus avoid autoimmune disorders. It remains unclear if the specialized thymic niche controls the number of differentiating Tregs. We investigated development of murine Tregs from precursors expressing the naturally very large repertoire of TCRs. By analyzing their developmental kinetics, we observed that differentiating Tregs dwell in the thymus 鈭1 d longer than their conventional T cell counterparts. By generating hematopoietic chimeras with very low proportions of trackable precursors, we could follow individual waves of developing T cells in the thymus. We observed strongly increased proportions of Tregs at the end of the waves, confirming that these cells are the last to leave the thymus. To assess whether the thymic niche limits Treg development, we generated hematopoietic chimeras in which very few T cell precursors could develop. The substantial increase in the proportion of Tregs we found in these mice suggested a limiting role of the thymic niche; however, this increase was accounted for entirely by the prolonged thymic dwell time of Tregs. We conclude that, when precursors express a naturally diverse TCR repertoire, the thymic niche does not limit differentiation of Tregs.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 22988035 2012

Open Access
Zuklys S, Mayer CE, Zhanybekova S, Stefanski HE, Nusspaumer G, Gill J, Barthlott T, Chappaz S, Nitta T, Dooley J, Nogales-Cadenas R, Takahama Y, Finke D, Liston A, Blazar BR, Pascual-Montano A, Holl盲nder GA Immunology

Thymic epithelial cells provide unique cues for the lifelong selection and differentiation of a repertoire of functionally diverse T cells. Rendered microRNA (miRNA) deficient, these stromal cells in the mouse lose their capacity to instruct the commitment of hematopoietic precursors to a T cell fate, to effect thymocyte positive selection, and to achieve promiscuous gene expression required for central tolerance induction. Over time, the microenvironment created by miRNA-deficient thymic epithelia assumes the cellular composition and structure of peripheral lymphoid tissue, where thympoiesis fails to be supported. These findings emphasize a global role for miRNA in the maintenance and function of the thymic epithelial cell scaffold and establish a novel mechanism how these cells control peripheral tissue Ag expression to prompt central immunological tolerance.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 22972926 2012

Liston A, Papadopoulou AS, Danso-Abeam D, Dooley J Immunology

Recent research into the role of microRNA (miR) in the immune system has identified the miR-29 family as critical regulators of key processes in adaptive immunity. The miR-29 family consists of four members with shared regulatory capacity, namely miR-29a, miR-29b-1, miR-29b-2 and miR-29c. Being expressed in both T and B cells, as well as the main accessory cell types of thymic epithelium and dendritic cells, the miR-29 family has been identified as a putative regulator of immunity due to the predicted suppression of key immunological pathways. The generation of a series of in vivo molecular tools targeting the miR-29 family has identified the critical role of these miR in setting the molecular threshold for three central events in adaptive immunity: (1) control over thymic production of T cells by modulating the threshold for infection-associated thymic involution, (2) creating a neutral threshold for T cell polarization following activation, and (3) setting the threshold for B cell oncogenic transformation. These results identify the miR-29 family as potent immune modulators which have already been exploited through the evolution of a viral mimic and could potentially be exploited further for therapeutic intervention.

+view abstract Cellular and molecular life sciences : CMLS, PMID: 22971773 2012

Open Access
A Pal, TM Barber, M Van de Bunt, SA Rudge, Q Zhang, KL Lachlan, NS Cooper, H Linden, JC Levy, MJ Wakelam, L Walker, F Karpe, AL Gloyn Signalling,Lipidomics

Epidemiologic and genetic evidence links type 2 diabetes, obesity, and cancer. The tumor-suppressor phosphatase and tensin homologue (PTEN) has roles in both cellular growth and metabolic signaling. Germline PTEN mutations cause a cancer-predisposition syndrome, providing an opportunity to study the effect of PTEN haploinsufficiency in humans.

+view abstract The New England journal of medicine, PMID: 22970944 2012

Open Access
E Ivanova, JH Chen, A Segonds-Pichon, SE Ozanne, G Kelsey

The nutritional environment in which the mammalian fetus or infant develop is recognized as influencing the risk of chronic diseases, such as type 2 diabetes and hypertension, in a phenomenon that has become known as developmental programming. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, because epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. One class of genes that has been considered a potential target or mediator of programming events is imprinted genes, because these genes critically depend upon epigenetic modifications for correct expression and because many imprinted genes have roles in controlling fetal growth as well as neonatal and adult metabolism. In this study, we have used an established model of developmental programming-isocaloric protein restriction to female mice during gestation or lactation-to examine whether there are effects on expression and DNA methylation of imprinted genes in the offspring. We find that although expression of some imprinted genes in liver of offspring is robustly and sustainably changed, methylation of the differentially methylated regions (DMRs) that control their monoallelic expression remains largely unaltered. We conclude that deregulation of imprinting through a general effect on DMR methylation is unlikely to be a common factor in developmental programming.

+view abstract Epigenetics : official journal of the DNA Methylation Society, PMID: 22968513 2012

O Stoevesandt, MJ Taussig

Affinity proteomics is the field of proteome analysis based on the use of antibodies and other binding reagents as protein-specific detection probes. In this review, the particular strengths of affinity methods for determination of protein localization, functional characterization, biomarker discovery and intracellular applications, and their resulting impact in basic and clinical research are highlighted. An additional focus is on the requirements for systematic binder generation and current large-scale binder projects, including bioinformatic frameworks for epitope selection and for documentation of available binding reagents and their performance. In addition to current affinity proteomics methods and applications, including arrays of proteins, binders, lysates and tissues, approaches coupling mass spectrometry-based proteomics and affinity proteomics are reviewed.

+view abstract Expert review of proteomics, PMID: 22967077 2012

Open Access
L Li, MI Stefan, N Le Nov猫re Signalling

NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors.

+view abstract PloS one, PMID: 22962589 2012

Open Access
R Adalbert, G Morreale, M Paizs, L Conforti, SA Walker, HL Roderick, MD Bootman, L Sikl贸s, MP Coleman Signalling,Imaging

Calcium accumulation induces the breakdown of cytoskeleton and axonal fragmentation in the late stages of Wallerian degeneration. In the early stages there is no evidence for any long-lasting, extensive increase in intra-axonal calcium but there does appear to be some redistribution. We hypothesized that changes in calcium distribution could have an early regulatory role in axonal degeneration in addition to the late executionary role of calcium. Schmidt-Lanterman clefts (SLCs), which allow exchange of metabolites and ions between the periaxonal and extracellular space, are likely to have an increased role when axon segments are separated from the cell body, so we used the oxalate-pyroantimonate method to study calcium at SLCs in distal stumps of transected wild-type and slow Wallerian degeneration (Wld(S)) mutant sciatic nerves, in which Wallerian degeneration is greatly delayed. In wild-type nerves most SLCs show a step gradient of calcium distribution, which is lost at around 20% of SLCs within 3mm of the lesion site by 4-24h after nerve transection. To investigate further the association with Wallerian degeneration, we studied nerves from Wld(S) rats. The step gradient of calcium distribution in Wld(S) is absent in around 20% of the intact nerves beneath SLCs but 4-24h following injury, calcium distribution in transected axons remained similar to that in uninjured nerves. We then used calcium indicators to study influx and buffering of calcium in injured neurites in primary culture. Calcium penetration and the early calcium increase in this system were indistinguishable between Wld(S) and wild-type axons. However, a significant difference was observed during the following hours, when calcium increased in wild-type neurites but not in Wld(S) neurites. We conclude that there is little relationship between calcium distribution and the early stages of Wallerian degeneration at the time points studied in vivo or in vitro but that Wld(S) neurites fail to show a later calcium rise that could be a cause or consequence of the later stages of Wallerian degeneration.

+view abstract Neuroscience, PMID: 22960623 2012

Open Access
M Spivakov, J Akhtar, P Kheradpour, K Beal, C Girardot, G Koscielny, J Herrero, M Kellis, EE Furlong, E Birney

Advances in sequencing technology have boosted population genomics and made it possible to map the positions of transcription factor binding sites (TFBSs) with high precision. Here we investigate TFBS variability by combining transcription factor binding maps generated by ENCODE, modENCODE, our previously published data and other sources with genomic variation data for human individuals and Drosophila isogenic lines.

+view abstract Genome biology, PMID: 22950968 2012

Open Access
JA Hackett, JP Reddington, CE Nestor, DS Dunican, MR Branco, J Reichmann, W Reik, MA Surani, IR Adams, RR Meehan

Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.

+view abstract Development (Cambridge, England), PMID: 22949617 2012

FM Drawnel, CR Archer, HL Roderick

Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease.

+view abstract British journal of pharmacology, PMID: 22946456 2013

A Onnis, M Navari, G Antonicelli, F Morettini, S Mannucci, G De Falco, E Vigorito, L Leoncini

Epstein-Barr Virus (EBV) is a 脦鲁-herpesvirus that infects >90% of the human population. Although EBV persists in its latent form in healthy carriers, the virus is also associated with several human cancers. EBV is strongly associated with Burkitt lymphoma (BL), even though there is still no satisfactory explanation of how EBV participates in BL pathogenesis. However, new insights into the interplay between viruses and microRNAs (miRNAs) have recently been proposed. In particular, it has been shown that B-cell differentiation in EBV-positive BL is impaired at the post-transcriptional level by altered expression of hsa-miR-127. Here, we show that the overexpression of hsa-miR-127 is due to the presence of the EBV-encoded nuclear antigen 1 (EBNA1) and give evidence of a novel mechanism of direct regulation of the human miRNA by this viral product. Finally, we show that the combinatorial expression of EBNA1 and hsa-miR-127 affects the expression of master B-cell regulators in human memory B cells, confirming the scenario previously observed in EBV-positive BL primary tumors and cell lines. A good understanding of these mechanisms will help to clarify the complex regulatory networks between host and pathogen, and favor the design of more specific treatments for EBV-associated malignancies.

+view abstract Blood cancer journal, PMID: 22941339 2012

JR Peat, W Reik

The cloning of Dolly the sheep was a remarkable demonstration of the oocyte's ability to reprogram a specialized nucleus. However, embryos derived from such somatic cell nuclear transfer (SCNT) very rarely result in live births-a fate that may be linked to observed epigenetic defects. A new genome-wide study shows that epigenetic reprogramming in SCNT embryos does not fully recapitulate the natural DNA demethylation events occurring at fertilization, resulting in aberrant methylation at some promoters and repetitive elements that may contribute to developmental failure.

+view abstract Nature genetics, PMID: 22932499 2012

Open Access
B眉chel F, Wrzodek C, Mittag F, Dr盲ger A, Eichner J, Rodriguez N, Le Nov猫re N, Zell A Signalling

The biological pathway exchange language (BioPAX) and the systems biology markup language (SBML) belong to the most popular modeling and data exchange languages in systems biology. The focus of SBML is quantitative modeling and dynamic simulation of models, whereas the BioPAX specification concentrates mainly on visualization and qualitative analysis of pathway maps. BioPAX describes reactions and relations. In contrast, SBML core exclusively describes quantitative processes such as reactions. With the SBML qualitative models extension (qual), it has recently also become possible to describe relations in SBML. Before the development of SBML qual, relations could not be properly translated into SBML. Until now, there exists no BioPAX to SBML converter that is fully capable of translating both reactions and relations.

+view abstract Bioinformatics (Oxford, England), PMID: 22923304 2012

Open Access
Crawford ED, Seaman JE, Barber AE, David DC, Babbitt PC, Burlingame AL, Wells JA Signalling

Caspases, cysteine proteases with aspartate specificity, are key players in programmed cell death across the metazoan lineage. Hundreds of apoptotic caspase substrates have been identified in human cells. Some have been extensively characterized, revealing key functional nodes for apoptosis signaling and important drug targets in cancer. But the functional significance of most cuts remains mysterious. We set out to better understand the importance of caspase cleavage specificity in apoptosis by asking which cleavage events are conserved across metazoan model species. Using N-terminal labeling followed by mass spectrometry, we identified 257 caspase cleavage sites in mouse, 130 in Drosophila, and 50 in Caenorhabditis elegans. The large majority of the caspase cut sites identified in mouse proteins were found conserved in human orthologs. However, while many of the same proteins targeted in the more distantly related species were cleaved in human orthologs, the exact sites were often different. Furthermore, similar functional pathways are targeted by caspases in all four species. Our data suggest a model for the evolution of apoptotic caspase specificity that highlights the hierarchical importance of functional pathways over specific proteins, and proteins over their specific cleavage site motifs.

+view abstract Cell death and differentiation, PMID: 22918439

D Lu, MP Davis, C Abreu-Goodger, W Wang, LS Campos, J Siede, E Vigorito, WC Skarnes, I Dunham, AJ Enright, P Liu

miRNAs are a class of small non-coding RNAs that regulate gene expression and have critical functions in various biological processes. Hundreds of miRNAs have been identified in mammalian genomes but only a small number of them have been functionally characterized. Recent studies also demonstrate that some miRNAs have important roles in reprogramming somatic cells to induced pluripotent stem cells (iPSCs).

+view abstract PloS one, PMID: 22912667 2012

Open Access
DR Soond, EC Slack, OA Garden, DT Patton, K Okkenhaug Immunology

Regulatory T cells (Tregs) prevent autoimmunity and inflammation by suppressing the activation of other T cells and antigen presenting cells. The role of phosphoinositide 3-kinase (PI3K) signaling in Treg is controversial. Some studies suggest that inhibition of the PI3K pathway is essential for the development of Tregs whereas other studies have shown reduced Treg numbers and function when PI3K activity is suppressed. Here we attempt to reconcile the different studies that have explored PI3K and the downstream effectors Akt, Foxo, and mTOR in regulatory T cell development and function and discuss the implications for health and therapeutic intervention.

+view abstract Frontiers in immunology, PMID: 22912633 2012

Leeb M,Walker R,Mansfield B,Nichols J,Smith A,Wutz A Flow Cytometry

Haploid embryonic stem cells (ESCs) have recently been derived from parthenogenetic mouse embryos and offer new possibilities for genetic screens. The ability of haploid ESCs to give rise to a wide range of differentiated cell types in the embryo and in vitro has been demonstrated. However, it has remained unclear whether haploid ESCs can contribute to the germline. Here, we show that parthenogenetic haploid ESCs at high passage have robust germline competence enabling the production of transgenic mouse strains from genetically modified haploid ESCs. We also show that differentiation of haploid ESCs in the embryo correlates with the gain of a diploid karyotype and that diploidisation is the result of endoreduplication and not cell fusion. By contrast, we find that a haploid karyotype is maintained when differentiation to an extra-embryonic fate is forced by induction of Gata6.

+view abstract Development (Cambridge, England), PMID: 22912412 2012