海角社区论坛

 

Filter

Publications

The 海角社区论坛 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
Sanchez-Alvarez M, Zhang Q, Finger F, Wakelam MJ, Bakal C Signalling,Lipidomics

We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth.

+view abstract Open biology, PMID: 26333836 2015

Open Access
Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H, Mifsud B, Dimitrova E, Matheson L, Tavares-Cadete F, Furlan-Magaril M, Segonds-Pichon A, Jurkowski W, Wingett SW, Tabbada K, Andrews S, Herman B, LeProust E, Osborne CS, Koseki H, Fraser P, Luscombe NM, Elderkin S Genomics

The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.

+view abstract Nature genetics, PMID: 26323060 2015

Open Access
Sauer K, Okkenhaug K Immunology

+view abstract Frontiers in immunology, PMID: 26322043 2015

Open Access
Gilbert DM, Fraser P

+view abstract Genome biology, PMID: 26319739 2015

Parker VE, Knox RG, Zhang Q, Wakelam MJ, Semple RK Signalling,Lipidomics

Somatic activating mutations in PIK3CA, which encodes the p110伪 catalytic subunit of phosphoinositide-3-kinase (PI3K) are frequently found in cancers and have been identified in a spectrum of mosaic overgrowth disorders ranging from isolated digit enlargement to more extensive overgrowth of the body, brain, or vasculature. We aimed to study affected dermal fibroblasts with a view to inform therapeutic studies, and to observe cancer-associated mutations in isolation.

+view abstract Lancet (London, England), PMID: 26312899 2015

Open Access
Pearce VQ, Bouabe H, MacQueen AR, Carbonaro V, Okkenhaug K Immunology

PI3Ks regulate diverse immune cell functions by transmitting intracellular signals from Ag, costimulatory receptors, and cytokine receptors to control cell division, differentiation, survival, and migration. In this study, we report the effect of inhibiting the p110未 subunit of PI3K未 on CD8(+) T cell responses to infection with the intracellular bacteria Listeria monocytogenes. A strong dependency on PI3K未 for IFN-纬 production by CD8(+) T cells in vitro was not recapitulated after Listeria infection in vivo. Inactivation of PI3K未 resulted in enhanced bacterial elimination by the innate immune system. However, the magnitudes of the primary and secondary CD8 +: T cell responses were reduced. Moreover, PI3K未 activity was required for CD8(+) T cells to provide help to other responding CD8(+) cells. These findings identify PI3K未 as a key regulator of CD8(+) T cell responses that integrates extrinsic cues, including those from other responding cells, to determine the collective behavior of CD8(+) T cell populations responding to infection.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 26311905 2015

Open Access
Nagano T, V谩rnai C, Schoenfelder S, Javierre BM, Wingett SW, Fraser P Signalling

Chromosome conformation capture and various derivative methods such as 4C, 5C and Hi-C have emerged as standard tools to analyze the three-dimensional organization of the genome in the nucleus. These methods employ ligation of diluted cross-linked chromatin complexes, intended to favor proximity-dependent, intra-complex ligation. During development of single-cell Hi-C, we devised an alternative Hi-C protocol with ligation in preserved nuclei rather than in solution. Here we directly compare Hi-C methods employing in-nucleus ligation with the standard in-solution ligation.

+view abstract Genome biology, PMID: 26306623 2015

Rudge SA, Wakelam MJ Signalling

Signalling through the PI3kinases pathways mediates the actions of a plethora of hormones, growth factors, cytokines and neurotransmitters upon their target cells following receptor occupation. Over-activation of these pathways has been implicated in a number of pathologies in particular a range of malignancies. The tight regulation of signalling pathways necessitates the involvement of both stimulatory a terminating enzymes, inappropriate activation of a pathway can thus result from activation or inhibition of the two signalling arms. A range of enzymes have been identified that catalyse the hydrolysis of phosphoinositides, this review outlines these and highlights those that have been implicated in promoting malignancy.

+view abstract Journal of lipid research, PMID: 26302980 2015

Open Access
Browning MJ, Chandra A, Carbonaro V, Okkenhaug K, Barwell J Immunology

Cowden's syndrome is a rare, autosomal dominant disease caused by mutations in the phosphoinositide 3-kinase and phosphatase and tensin homolog (PTEN) gene. It is associated with hamartomatous polyposis of the gastrointestinal tract, mucocutaneous lesions and increased risk of developing certain types of cancer. In addition to increased risk of tumour development, mutations in PTEN have also been associated with autoimmunity in both mice and humans. Until now, however, an association between Cowden's syndrome and immune deficiency has been reported in a single patient only.

+view abstract Journal of medical genetics, PMID: 26246517 2015

Open Access
Latos PA, Goncalves A, Oxley D, Mohammed H, Turro E, Hemberger M Epigenetics,Mass Spectrometry

Esrrb (oestrogen-related receptor beta) is a transcription factor implicated in embryonic stem (ES) cell self-renewal, yet its knockout causes intrauterine lethality due to defects in trophoblast development. Here we show that in trophoblast stem (TS) cells, Esrrb is a downstream target of fibroblast growth factor (Fgf) signalling and is critical to drive TS cell self-renewal. In contrast to its occupancy of pluripotency-associated loci in ES cells, Esrrb sustains the stemness of TS cells by direct binding and regulation of TS cell-specific transcription factors including Elf5 and Eomes. To elucidate the mechanisms whereby Esrrb controls the expression of its targets, we characterized its TS cell-specific interactome using mass spectrometry. Unlike in ES cells, Esrrb interacts in TS cells with the histone demethylase Lsd1 and with the RNA Polymerase II-associated Integrator complex. Our findings provide new insights into both the general and context-dependent wiring of transcription factor networks in stem cells by master transcription factors.

+view abstract Nature communications, PMID: 26206133 2015

Open Access
Lopes Novo C, Rugg-Gunn PJ Epigenetics

Translating the vast amounts of genomic and epigenomic information accumulated on the linear genome into three-dimensional models of nuclear organization is a current major challenge. In response to this challenge, recent technological innovations based on chromosome conformation capture methods in combination with increasingly powerful functional approaches have revealed exciting insights into key aspects of genome regulation. These findings have led to an emerging model where the genome is folded and compartmentalized into highly conserved topological domains that are further divided into functional subdomains containing physical loops that bring cis-regulatory elements to close proximity. Targeted functional experiments, largely based on designable DNA-binding proteins, have begun to define the major architectural proteins required to establish and maintain appropriate genome regulation. Here, we focus on the accessible and well-characterized system of pluripotent cells to review the functional role of chromatin organization in regulating pluripotency, differentiation and reprogramming.

+view abstract Briefings in functional genomics, PMID: 26206085 2015

Open Access
Jack CV, Cruz C, Hull RM, Keller MA, Ralser M, Houseley J Epigenetics

Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 26195783 2015

B茅n茅zech C, Luu NT, Walker JA, Kruglov AA, Loo Y, Nakamura K, Zhang Y, Nayar S, Jones LH, Flores-Langarica A, McIntosh A, Marshall J, Barone F, Besra G, Miles K, Allen JE, Gray M, Kollias G, Cunningham AF, Withers DR, Toellner KM, Jones ND, Veldhoen M, Nedospasov SA, McKenzie AN, Caama帽o JH Immunology

Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses.

+view abstract Nature immunology, PMID: 26147686 2015

Open Access
Najas S, Arranz J, Lochhead PA, Ashford AL, Oxley D, Delabar JM, Cook SJ, Barallobre MJ, Arbon茅s ML Signalling,Mass Spectrometry

Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia) cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

+view abstract EBioMedicine, PMID: 26137553 2015

Veldhoen M, Ferreira C

Organisms need to protect themselves against potential dangers from their surroundings, yet they require constant and intimate interactions with the same environment for their survival. The immune system is instrumental for protection against invading organisms and their toxins. The immune system consists of many cell types and is highly integrated within other tissues. Immune activity is particularly enriched at surfaces that separate the host from its environment, such as the skin and the gastrointestinal tract. This enables protection at sites directly at risk but also enables environmental factors to influence the maturation and function of immune structures and cells. Recent work has indicated that the diet in particular is able to influence the immune system and thus affect the development of inflammatory disease. This review aims to highlight recent work on how external factors, with a focus on those derived from the diet such as vitamin A, can have a direct or indirect deterministic influence on the activity and function of immunity.

+view abstract Nature medicine, PMID: 26121194 2015

Open Access
Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AE, Welch HC, Timpson P Signalling

Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.

+view abstract Small GTPases, PMID: 26103062 2015

Bachman M, Uribe-Lewis S, Yang X, Burgess HE, Iurlaro M, Reik W, Murrell A, Balasubramanian S Epigenetics

5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.

+view abstract Nature chemical biology, PMID: 26098680 2015

Open Access
Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K Immunology

The healthy immune system protects against infection and malignant transformation without causing significant damage to host tissues. Immune dysregulation results in diverse pathologies including autoimmune disease, chronic inflammatory disorders, allergies as well as immune deficiencies and cancer. Phosphoinositide 3-kinase (PI3K) signalling has been shown to be a key pathway in the regulation of the immune response and continues to be the focus of intense research. In recent years we have gained detailed understanding of PI3K signalling, and saw the development of potent and highly selective small molecule inhibitors, of which several are currently in clinical trials for the treatment of immune-related disorders and cancer. The role of PI3K signalling in the immune response has been the subject of detailed reviews; here we focus on relevant recent progress in pre-clinical and clinical development of PI3K inhibitors.

+view abstract Current opinion in pharmacology, PMID: 26093105 2015

Open Access
Rodriguez N, Thomas A, Watanabe L, Vazirabad IY, Kofia V, G贸mez HF, Mittag F, Matthes J, Rudolph J, Wrzodek F, Netz E, Diamantikos A, Eichner J, Keller R, Wrzodek C, Fr枚hlich S, Lewis NE, Myers CJ, Le Nov猫re N, Palsson B脴, Hucka M, Dr盲ger A Signalling

JSBML, the official pure Java programming library for the Systems Biology Markup Language (SBML) format, has evolved with the advent of different modeling formalisms in systems biology and their ability to be exchanged and represented via extensions of SBML. JSBML has matured into a major, active open-source project with contributions from a growing, international team of developers who not only maintain compatibility with SBML, but also drive steady improvements to the Java interface and promote ease-of-use with end users.

+view abstract Bioinformatics (Oxford, England), PMID: 26079347 2015

Wouters MM, Van Wanrooy S, Nguyen A, Dooley J, Aguilera-Lizarraga J, Van Brabant W, Garcia-Perez JE, Van Oudenhove L, Van Ranst M, Verhaegen J, Liston A, Boeckxstaens G Immunology

Psychological factors increase the risk to develop postinfectious IBS (PI-IBS), but the mechanisms involved are unclear. As stress affects the immune system, we investigated the potential interaction between psychological factors, the immune response against infectious gastroenteritis (IGE) and the development of IGE and PI-IBS in a large cohort exposed to contaminated drinking water.

+view abstract Gut, PMID: 26071133 2016

Open Access
Sreenivasan J, Schlenner S, Franckaert D, Dooley J, Liston A Immunology

Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus.

+view abstract Immunology, PMID: 26059465 2015

von Meyenn F, Reik W Epigenetics

Epigenetic reprogramming in the germline resets genomic potential and erases epigenetic memory. Three studies by Gkountela et al., Guo et al., and Tang et al. analyze the transcriptional and epigenetic landscape of human primordial germ cells, revealing a unique transcriptional network and progressive and conserved global erasure of DNA methylation.

+view abstract Cell, PMID: 26046435 2015

Mundinger TO, Cooper E, Coleman MP, Taborsky GJ Signalling

Short-term hyperglycemia suppresses superior cervical ganglia neurotransmission. If this ganglionic dysfunction also occurs in the islet sympathetic pathway, sympathetically mediated glucagon responses could be impaired. Our objectives were 1) to test for a suppressive effect of 7 days of streptozotocin (STZ) diabetes on celiac ganglia (CG) activation and on neurotransmitter and glucagon responses to preganglionic nerve stimulation, 2) to isolate the defect in the islet sympathetic pathway to the CG itself, and 3) to test for a protective effect of the WLD(S) mutation. We injected saline or nicotine in nondiabetic and STZ-diabetic rats and measured fos mRNA levels in whole CG. We electrically stimulated the preganglionic or postganglionic nerve trunk of the CG in nondiabetic and STZ-diabetic rats and measured portal venous norepinephrine and glucagon responses. We repeated the nicotine and preganglionic nerve stimulation studies in nondiabetic and STZ-diabetic WLD(S) rats. In STZ-diabetic rats, the CG fos response to nicotine was suppressed, and the norepinephrine and glucagon responses to preganglionic nerve stimulation were impaired. In contrast, the norepinephrine and glucagon responses to postganglionic nerve stimulation were normal. The CG fos response to nicotine, and the norepinephrine and glucagon responses to preganglionic nerve stimulation, were normal in STZ-diabetic WLD(S) rats. In conclusion, short-term hyperglycemia's suppressive effect on nicotinic acetylcholine receptors of the CG impairs sympathetically mediated glucagon responses. WLD(S) rats are protected from this dysfunction. The implication is that this CG dysfunction may contribute to the impaired glucagon response to insulin-induced hypoglycemia seen early in type 1 diabetes.

+view abstract American journal of physiology. Endocrinology and metabolism, PMID: 26037249 2015

Open Access
Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P, Goldman-Roberts M, McEwen K, Sun B, Pedersen R, Ferguson-Smith AC Bioinformatics

Selective maintenance of genomic epigenetic imprints during pre-implantation development is required for parental origin-specific expression of imprinted genes. The Kruppel-like zinc finger protein ZFP57 acts as a factor necessary for maintaining the DNA methylation memory at multiple imprinting control regions in early mouse embryos and embryonic stem (ES) cells. Maternal-zygotic deletion of ZFP57 in mice presents a highly penetrant phenotype with no animals surviving to birth. Additionally, several cases of human transient neonatal diabetes are associated with somatic mutations in the ZFP57 coding sequence.

+view abstract Genome biology, PMID: 26025256 2015